专栏首页挖掘大数据超详细的大数据学习资源推荐(上)
原创

超详细的大数据学习资源推荐(上)

今天为大家推荐一些翻译整理的大数据相关的学习资源,希望能给大家带来价值。

关系数据库管理系统(RDBMS)

框架

  • Apache Hadoop:分布式处理架构,结合了 MapReduce(并行处理)、YARN(作业调度)和HDFS(分布式文件系统);
  • Tigon:高吞吐量实时流处理框架。

分布式编程

  • AddThis Hydra :最初在AddThis上开发的分布式数据处理和存储系统;
  • AMPLab SIMR:用在Hadoop MapReduce v1上运行Spark;
  • Apache Beam:为统一的模型以及一套用于定义和执行数据处理工作流的特定SDK语言;
  • Apache Crunch:一个简单的Java API,用于执行在普通的MapReduce实现时比较单调的连接、数据聚合等任务;
  • Apache DataFu:由LinkedIn开发的针对Hadoop and 和Pig的用户定义的函数集合;
  • Apache Flink:具有高性能的执行时间和自动程序优化;
  • Apache Gora:内存中的数据模型和持久性框架;
  • Apache Hama:BSP(整体同步并行)计算框架;
  • Apache MapReduce :在集群上使用并行、分布式算法处理大数据集的编程模型;
  • Apache Pig :Hadoop中,用于处理数据分析程序的高级查询语言;
  • Apache REEF :用来简化和统一低层大数据系统的保留性评估执行框架;
  • Apache S4 :S4中流处理与实现的框架;
  • Apache Spark :内存集群计算框架;
  • Apache Spark Streaming :流处理框架,同时是Spark的一部分;
  • Apache Storm :Twitter流处理框架,也可用于YARN;
  • Apache Samza :基于Kafka和YARN的流处理框架;
  • Apache Tez :基于YARN,用于执行任务中的复杂DAG(有向无环图);
  • Apache Twill :基于YARN的抽象概念,用于减少开发分布式应用程序的复杂度;
  • Cascalog:数据处理和查询库;
  • Cheetah :在MapReduce之上的高性能、自定义数据仓库;
  • Concurrent Cascading :在Hadoop上的数据管理/分析框架;
  • Damballa Parkour :用于Clojure的MapReduce库;
  • Datasalt Pangool :可选择的MapReduce范例;
  • DataTorrent StrAM :为实时引擎,用于以尽可能畅通的方式、最小的开支和对性能最小的影响,实现分布式、异步、实时的内存大数据计算;
  • Facebook Corona :为Hadoop做优化处理,从而消除单点故障;
  • Facebook Peregrine :MapReduce框架;
  • Facebook Scuba :分布式内存数据存储;
  • Google Dataflow :创建数据管道,以帮助其分析框架;
  • Netflix PigPen :为MapReduce,用于编译成Apache Pig;
  • Nokia Disco :由Nokia开发的MapReduc获取、转换和分析数据;
  • Google MapReduce :MapReduce框架;
  • Google MillWheel :容错流处理框架;
  • JAQL :用于处理结构化、半结构化和非结构化数据工作的声明性编程语言;
  • Kite :为一组库、工具、实例和文档集,用于使在Hadoop的生态系统上建立系统更加容易;
  • Metamarkets Druid :用于大数据集的实时e框架;
  • Onyx :分布式云计算;
  • Pinterest Pinlater :异步任务执行系统;
  • Pydoop :用于Hadoop的Python MapReduce和HDFS API;
  • Rackerlabs Blueflood :多租户分布式测度处理系统;
  • Stratosphere :通用集群计算框架;
  • Streamdrill :用于计算基于不同时间窗口的事件流的活动,并找到最活跃的一个;
  • Tuktu :易于使用的用于分批处理和流计算的平台,通过Scala、 Akka和Play所建;
  • Twitter Scalding:基于Cascading,用于Map Reduce工作的Scala库;
  • Twitter Summingbird :在Twitter上使用Scalding和Storm串流MapReduce;
  • Twitter TSAR :Twitter上的时间序列聚合器。

分布式文件系统

文件数据模型

  • Actian Versant:商用的面向对象数据库管理系统;
  • Crate Data:是一个开源的大规模可扩展的数据存储,需要零管理模式;
  • Facebook Apollo:Facebook的Paxos算法,类似于NoSQL数据库;
  • jumboDB:基于Hadoop的面向文档的数据存储;
  • LinkedIn Espresso:可横向扩展的面向文档的NoSQL数据存储;
  • MarkLogic:模式不可知的企业版NoSQL数据库技术;
  • MongoDB:面向文档的数据库系统;
  • RavenDB:一个事务性的,开源文档数据库;
  • RethinkDB:支持连接查询和群组依据等查询的文档型数据库。

Key Map 数据模型

注意:业内存在一些术语混乱,有两个不同的东西都叫做“列式数据库”。这里列出的有一些是围绕“key-map”数据模型而建的分布式、持续型数据库,其中所有的数据都有(可能综合了)键,并与映射中的键-值对相关联。在一些系统中,多个这样的值映射可以与键相关联,并且这些映射被称为“列族”(具有映射值的键被称为“列”)。

另一组也可称为“列式数据库”的技术因其存储数据的方式而有别于前一组,它在磁盘上或在存储器中——而不是以传统方式,即所有既定键的键值都相邻着、逐行存储。这些系统也彼此相邻来存储所有列值,但是要得到给定列的所有值却不需要以前那么繁复的工作。

前一组在这里被称为“key map数据模型”,这两者和Key-value 数据模型之间的界限是相当模糊的。后者对数据模型有更多的存储格式,可在列式数据库中列出。若想了解更多关于这两种模型的区分,可阅读Daniel Abadi的博客:Distinguishing two major types of Column Stores

  • Apache Accumulo:内置在Hadoop上的分布式键/值存储;
  • Apache Cassandra:由BigTable授权,面向列的分布式数据存储;
  • Apache HBase:由BigTable授权,面向列的分布式数据存储;
  • Facebook HydraBase:Facebook所开发的HBase的衍化品;
  • Google BigTable:面向列的分布式数据存储;
  • Google Cloud Datastore:为完全管理型的无模式数据库,用于存储在BigTable上非关系型数据;
  • Hypertable:由BigTable授权,面向列的分布式数据存储;
  • InfiniDB:通过MySQL的接口访问,并使用大规模并行处理进行并行查询;
  • Tephra:用于HBase处理;
  • Twitter Manhattan:Twitter的实时、多租户分布式数据库。

键-值数据模型

  • Aerospike:支持NoSQL的闪存优化,数据存储在内存。开源,“'C'(不是Java或Erlang)中的服务器代码可精确地调整从而避免上下文切换和内存拷贝”。
  • Amazon DynamoDB:分布式键/值存储,Dynamo论文的实现;
  • Edis:为替代Redis的协议兼容的服务器;
  • ElephantDB:专门研究Hadoop中数据导出的分布式数据库;
  • EventStore:分布式时间序列数据库;
  • GridDB:适用于存储在时间序列中的传感器数据;
  • LinkedIn Krati:简单的持久性数据存储,拥有低延迟和高吞吐量;
  • Linkedin Voldemort:分布式键/值存储系统;
  • Oracle NoSQL Database:Oracle公司开发的分布式键值数据库;
  • Redis:内存中的键值数据存储;
  • Riak:分散式数据存储;
  • Storehaus:Twitter开发的异步键值存储的库;
  • Tarantool:一个高效的NoSQL数据库和Lua应用服务器;
  • TiKV:由Google Spanner和HBase授权,Rust提供技术支持的分布式键值数据库;
  • TreodeDB:可复制、共享的键-值存储,能提供多行原子写入。

图形数据模型

  • Apache Giraph:基于Hadoop的Pregel实现;
  • Apache Spark Bagel:可实现Pregel,为Spark的一部分;
  • ArangoDB:多层模型分布式数据库;
  • DGraph:一个可扩展的、分布式、低时延、高吞吐量的图形数据库,旨在为Google生产水平规模和吞吐量提供足够的低延迟,用于TB级的结构化数据的实时用户查询;
  • Facebook TAO:TAO是facebook广泛用来存储和服务于社交图形的分布式数据存储;
  • GCHQ Gaffer:GCHQ中的Gaffer是一个易于存储大规模图形的框架,其中节点和边缘都有统计数据;
  • Google Cayley:开源图形数据库;
  • Google Pregel :图形处理框架;
  • GraphLab PowerGraph:核心C ++ GraphLab API和建立在GraphLab API之上的高性能机器学习和数据挖掘工具包的集合;
  • GraphX:Spark中的弹性分布式图形系统;
  • Gremlin:图形追踪语言;
  • Infovore:以RDF为中心的Map / Reduce框架;
  • Intel GraphBuilder:在Hadoop上构建大规模图形的工具;
  • MapGraph:用于在GPU上大规模并行图形处理;
  • Neo4j:完全用Java写入的图形数据库;
  • OrientDB:文档和图形数据库;
  • Phoebus:大型图形处理框架;
  • Titan:建于Cassandra的分布式图形数据库;
  • Twitter FlockDB:分布式图形数据库。

NewSQL数据库

  • Actian Ingres:由商业支持,开源的SQL关系数据库管理系统;
  • Amazon RedShift:基于PostgreSQL的数据仓库服务;
  • BayesDB:面向统计数值的SQL数据库;
  • CitusDB:通过分区和复制横向扩展PostgreSQL;
  • Cockroach:可扩展、地址可复制、交易型的数据库;
  • Datomic:旨在产生可扩展、灵活的智能应用的分布式数据库;
  • FoundationDB:由F1授意的分布式数据库;
  • Google F1:建立在Spanner上的分布式SQL数据库;
  • Google Spanner:全球性的分布式半关系型数据库;
  • H-Store:是一个实验性主存并行数据库管理系统,用于联机事务处理(OLTP)应用的优化;
  • Haeinsa:基于Percolator,HBase的线性可扩展多行多表交易库;
  • HandlerSocket:MySQL/MariaDB的NoSQL插件;
  • InfiniSQL:无限可扩展的RDBMS;
  • MemSQL:内存中的SQL数据库,其中有优化的闪存列存储;
  • NuoDB:SQL / ACID兼容的分布式数据库;
  • Oracle TimesTen in-Memory Database:内存中具有持久性和可恢复性的关系型数据库管理系统;
  • Pivotal GemFire XD:内存中低延时的分布式SQL数据存储,可为内存列表数据提供SQL接口,在HDFS中较持久化;
  • SAP HANA:是在内存中面向列的关系型数据库管理系统;
  • SenseiDB:分布式实时半结构化的数据库;
  • Sky:用于行为数据的灵活、高性能分析的数据库;
  • SymmetricDS:用于文件和数据库同步的开源软件;
  • Map-D:为GPU内存数据库,也为大数据分析和可视化平台;
  • TiDB:TiDB是分布式SQL数据库,基于谷歌F1的设计灵感;
  • VoltDB:自称为最快的内存数据库。

列式数据库

注意:请在键-值数据模型 阅读相关注释。

  • Columnar Storage:解释什么是列存储以及何时会需要用到它;
  • Actian Vector:面向列的分析型数据库;
  • C-Store:面向列的DBMS;
  • MonetDB:列存储数据库;
  • Parquet:Hadoop的列存储格式;
  • Pivotal Greenplum:专门设计的、专用的分析数据仓库,类似于传统的基于行的工具,提供了一个列式工具;
  • Vertica:用来管理大规模、快速增长的大量数据,当用于数据仓库时,能够提供非常快的查询性能;
  • Google BigQuery :谷歌的云产品,由其在Dremel的创始工作提供支持;
  • Amazon Redshift :亚马逊的云产品,它也是基于柱状数据存储后端。

时间序列数据库

  • Cube:使用MongoDB来存储时间序列数据;
  • Axibase Time Series Database:在HBase之上的分布式时间序列数据库,它包括内置的Rule Engine、数据预测和可视化;
  • Heroic:基于Cassandra和Elasticsearch的可扩展的时间序列数据库;
  • InfluxDB:分布式时间序列数据库;
  • Kairosdb:类似于OpenTSDB但会考虑到Cassandra;
  • OpenTSDB:在HBase上的分布式时间序列数据库;
  • Prometheus:一种时间序列数据库和服务监测系统;
  • Newts:一种基于Apache Cassandra的时间序列数据库。

类SQL处理

  • Actian SQL for Hadoop:高性能交互式的SQL,可访问所有的Hadoop数据;
  • Apache Drill:由Dremel授意的交互式分析框架;
  • Apache HCatalog:Hadoop的表格和存储管理层;
  • Apache Hive:Hadoop的类SQL数据仓库系统;
  • Apache Optiq:一种框架,可允许高效的查询翻译,其中包括异构性及联合性数据的查询;
  • Apache Phoenix:Apache Phoenix 是 HBase 的 SQL 驱动;
  • Cloudera Impala:由Dremel授意的交互式分析框架;
  • Concurrent Lingual:Cascading中的类SQL查询语言;
  • Datasalt Splout SQL:用于大数据集的完整的SQL查询工具;
  • Facebook PrestoDB:分布式SQL查询工具;
  • Google BigQuery:交互式分析框架,Dremel的实现;
  • Pivotal HAWQ:Hadoop的类SQL的数据仓库系统;
  • RainstorDB:用于存储大规模PB级结构化和半结构化数据的数据库;
  • Spark Catalyst:用于Spark和Shark的查询优化框架;
  • SparkSQL:使用Spark操作结构化数据;
  • Splice Machine:一个全功能的Hadoop上的SQL RDBMS,并带有ACID事务;
  • Stinger:用于Hive的交互式查询;
  • Tajo:Hadoop的分布式数据仓库系统;
  • Trafodion:为企业级的SQL-on-HBase针对大数据的事务或业务工作负载的解决方案。

数据摄取

原创声明,本文系作者授权云+社区发表,未经许可,不得转载。

如有侵权,请联系 yunjia_community@tencent.com 删除。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 超详细的大数据学习资源推荐(下)

    服务编程 Akka Toolkit:JVM中分布性、容错事件驱动应用程序的运行时间; Apache Avro:数据序列化系统; Apache Cura...

    挖掘大数据
  • 收藏!6道常见hadoop面试题及答案解析

    你准备好面试了吗?呀,需要Hadoop面试题知识!不要慌!这里有一些可能会问到的问题以及你应该给出的答案。

    挖掘大数据
  • 浅析Hadoop大数据分析与应用

    为了满足日益增长的业务变化,京东的京麦团队在京东大数据平台的基础上,采用了Hadoop等热门的开源大数据计算引擎,打造了一款为京东运营和产品提供决策性的数据类产...

    挖掘大数据
  • 大数据学习资源汇总

    关系数据库管理系统(RDBMS) SQLServer:世界最有活力的数据库; MySQL:世界最流行的开源数据库; PostgreSQL:世界最先进的开...

    逸鹏
  • 大数据学习资源最全版本(收藏)

    Apache Hadoop:分布式处理架构,结合了 MapReduce(并行处理)、YARN(作业调度)和HDFS(分布式文件系统);

    风火数据
  • Qt官方示例-文本查找器

    Qt君
  • python学习-windows下使用p

    有时候需要处理很多报表,将一个目录下的所有excel格式报表合并,手工操作费事费力如果能使用python,将多个.xlsx同时能够合并多个excel表的话,多么...

    py3study
  • Java面试手册:JDBC

    南风
  • 深入Go的底层,带你走近一群有追求的人

    上周六晚上,我参加了“Go夜读”活动,这期主要讲Go汇编语言,由滴滴曹春晖大神主讲。活动结束后,我感觉打通了任督二脉。活动从晚上9点到深夜11点多,全程深度参与...

    老钱
  • 学不好 SQL 数据库的两个根本原因,我替你总结下

    如果我说 SQL 数据库很难学,需要刻骨铭心的用功,才能登堂入室。那估计有 5000 人正在批我的路上,煌煌而来。“难学个鸟,就那么点东西。老黄,你是不是又开始...

    Lenis

扫码关注云+社区

领取腾讯云代金券