现在 tensorflow和mxnet 很火,是否还有必要学习 scikit-learn 等框架?

本文整理自作者在知乎问题《现在 tensorflow 和 mxnet 很火,是否还有必要学习 scikit-learn 等框架?》下的回答,AI 研习社获其作者 阿萨姆 授权转载。

原题如下:

现在 tensorflow 和 mxnet 很火,那么对于深度学习(机器学习)准备入门的学生还有必要学习 scikit-learning,caffe 之类的框架么,以及是否有其他需要注意的地方?比如可以通过一些具体的场景描述一下这些框架的使用。

Scikit-learn 和 TensorFlow 之间有很多显著差异,非常有必要同时了解它们。

区别 1:对于数据的处理哲学不同导致了功能不同

Scikit-learn(sklearn) 的定位是通用机器学习库,而 TensorFlow(tf) 的定位主要是深度学习库。一个显而易见的不同:tf 并未提供 sklearn 那种强大的特征工程,如维度压缩、特征选择等。究其根本,我认为是因为机器学习模型的两种不同的处理数据的方式:

传统机器学习:利用特征工程 (feature engineering),人为对数据进行提炼清洗

深度学习:利用表示学习 (representation learning),机器学习模型自身对数据进行提炼

机器学习与深度学习对于特征抽取的不同之处,原图 [1]

上图直观的对比了我们提到的两种对于数据的学习方式,传统的机器学习方法主要依赖人工特征处理与提取,而深度学习依赖模型自身去学习数据的表示。这两种思路都是现行并存的处理数据的方法,更加详细的对比可以参考:人工智能(AI)是如何处理数据的?(http://t.cn/RHMSvc2)

sklearn 更倾向于使用者可以自行对数据进行处理,比如选择特征、压缩维度、转换格式,是传统机器学习库。而以tf 为代表的深度学习库会自动从数据中抽取有效特征,而不需要人为的来做这件事情,因此并未提供类似的功能。

区别 2:模型封装的抽象化程度不同,给与使用者自由度不同

sklearn 中的模块都是高度抽象化的,所有的分类器基本都可以在 3-5 行内完成,所有的转换器 (如 scaler 和 transformer) 也都有固定的格式。这种抽象化限制了使用者的自由度,但增加了模型的效率,降低了批量化、标准化的的难度 (通过使用 pipeline)。

而 tf 不同,虽然是深度学习库,但它有很高的自由度。你依然可以用它做传统机器学习所做的事情,代价是你需要自己实现算法。因此用 tf 类比 sklearn 不适合,封装在 tf 等工具库上的 keras[2] 才更像深度学习界的 sklearn。

从自由度角度来看,tf 更高;从抽象化、封装程度来看,sklearn 更高;从易用性角度来看,sklearn 更高。

区别 3:针对的群体、项目不同

sklearn 主要适合中小型的、实用机器学习项目,尤其是那种数据量不大且需要使用者手动对数据进行处理,并选择合适模型的项目。这类项目往往在 CPU 上就可以完成,对硬件要求低。

tf 主要适合已经明确了解需要用深度学习,且数据处理需求不高的项目。这类项目往往数据量较大,且最终需要的精度更高,一般都需要 GPU 加速运算。对于深度学习做 “小样” 可以在采样的小数据集上用 keras 做快速的实验,没了解的过朋友看一下 keras 的示例代码,就可以了解为什么 keras 堪比深度学习上的 sklearn 了。

总结

不难看出,sklearn 和 tf 有很大区别。虽然 sklearn 中也有神经网络模块,但做严肃的、大型的深度学习是不可能依靠 sklearn 的。虽然 tf 也可以用于做传统的机器学习、包括清理数据,但往往事倍功半。

更常见的情况下,可以把 sklearn 和 tf,甚至 keras 结合起来使用。sklearn 肩负基本的数据清理任务,keras 用于对问题进行小规模实验验证想法,而 tf 用于在完整的的数据上进行严肃的调参 (炼丹) 任务。

而单独把 sklearn 拿出来看的话,它的文档做的特别好,初学者跟着看一遍 sklearn 支持的功能大概就对机器学习包括的很多内容有了基本的了解。举个简单的例子,sklearn 很多时候对单独的知识点有概述,比如简单的异常检测 (2.7. Novelty and Outlier Detection,http://t.cn/RxwY7Pr)。因此,sklearn 不仅仅是简单的工具库,它的文档更像是一份简单的新手入门指南。

因此,以 sklearn 为代表的传统机器学习库(如瑞士军刀般的万能但高度抽象),和以 tf 为代表的自由灵活更具有针对性的深度学习库(如乐高般高度自由但使用繁琐)都是机器学习者必须要了解的工具。

工具是死的,人是活的。虽然做技术的一大乐趣就是造轮子,但不要把自己绑在一个轮子上,这样容易被碾死在滚滚向前的科技巨轮之下。

[1]Log Analytics With Deep Learning and Machine Learning - XenonStack,http://t.cn/R9MLg63

[2]Keras Documentation,https://keras.io/

本文来自企鹅号 - AI研习社媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能头条

深度学习在推荐领域的应用

18040
来自专栏机器学习养成记

用机器学习更快了解用户(翻译)

“ 英文博文的部分翻译。英文原文链接:https://erikbern.com/2017/12/12/learning-from-users-faster-u...

35990
来自专栏AlgorithmDog的专栏

一个特殊场景的 LR 预测优化 Trick

我们的业务碰到了一个很特殊的场景:用户数量巨大,上亿;物品数目比较少,不超过 500 个。针对这个特点,我们设计了一个小程序 Trick。这个程序 Trick ...

40750
来自专栏CreateAMind

深度学习与神经科学相遇(一)[译]

Figure 0. The Genetic Geography of the Brain - Allen Brain Atlas

9820
来自专栏智能算法

关于深度学习的框架、特征和挑战

在嵌入式系统上的深度学习 随着人工智能 (AI) 几乎延伸至我们生活的方方面面,主要挑战之一是将这种智能应用到小型、低功耗设备上。这需要嵌入式平台,能够处理高性...

34570
来自专栏机器之心

入门 | 强化学习的基本概念与代码实现

28350
来自专栏机器之心

Jeff Dean与David Patterson:不思考体系结构的深度学习研究者不是好工程师

今年 1 月,谷歌人工智能负责人 Jeff Dean(当时还是谷歌大脑负责人)与 2017 年图灵奖得主、体系结构巨擘 David Patterson(当时获奖...

10640
来自专栏大数据挖掘DT机器学习

使用深度学习进行语言翻译:神经网络和seq2seq为何效果非凡?

我们都知道而且喜欢谷歌翻译(Google Translate),这个网站可以几乎实时地在 100 多种不同的人类语言之间互相翻译,就好像是一种魔法。 谷歌翻译...

43470
来自专栏新智元

谷歌大脑负责人Jeff Dean:深度学习技术及趋势报告(76页PPT)

【新智元导读】谷歌大脑负责人Jeff Dean上周在“嵌入式视觉年度峰会”上发表演讲《智能计算系统中的大规模深度学习》,结合多年应用实例,讨论在从手机到数据中心...

43980
来自专栏PPV课数据科学社区

【学习】关于推荐系统中的特征工程

在多数数据和机器学习的blog里,特征工程 Feature Engineering 都很少被提到。做模型的或者搞Kaggle比赛的人认为这些搞featu...

54680

扫码关注云+社区

领取腾讯云代金券