前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Andrew Ng机器学习课程笔记--week9(下)(推荐系统&协同过滤)

Andrew Ng机器学习课程笔记--week9(下)(推荐系统&协同过滤)

作者头像
marsggbo
发布2018-01-23 18:11:22
8800
发布2018-01-23 18:11:22
举报

本周内容较多,故分为上下两篇文章。 本文为下篇。

一、内容概要

1. Anomaly Detection

  • Density Estimation
    • Problem Motivation
    • Gaussian Distribution
    • Algorithm
  • Building an Anomaly Detection System(创建异常检测系统)
    • Developing and Evaluating an Anomaly Detection System
    • Anomaly Detection vs. Supervised Learning
    • Choosing What Features to Use
  • Multivariate Gaussion Distribution(多元高斯分布)
    • Multivariate Gaussion Distribution
    • Anomaly Detection using the Multivariate Gaussion Distribution 2. Recommender System
  • Predicting Movie
    • Problem Formulation
    • Content Based Recommendations
  • Collaborative Filtering(协同过滤)
    • Collaborative Filtering
    • Collaborative Filtering Algorithm
  • Low Rank Matrix Factorization(低秩矩阵分解)
    • Vectorization(向量化): Low Rank Matrix Factorization
    • Implementational Detail:Mean Normalization
    • 二、重点&难点

Recommender System(推荐系统)

1.Predicting Movie

1)Problem Formulation

下面将以推荐电影为例来介绍推荐系统的实现。

movie

Alice

Bob

Carol

Dave

Love at last

5

5

0

0

Romance forever

5

?

?

0

Cute Puppies of love

?

4

0

?

nonstop car chases

0

0

5

4

swords & karate

0

0

5

?

上面的分数表示用户对该电影的评分(0~5分,?表示未获得评分数据) 为方便下面叙述,对如下符号进行说明:

  • \(n_u\):表示用户数量
  • \(n_m\):表示电影数量
  • r(i,j):如果等于1则表示用户j对电影i进行了评分
  • \(y^{(i,j)}\):表示用户j对电影i的评分

上面例子中可以知道 \(n_u=4 \quad n_m=5 \quad y^{(1,1)}=5\)

2)Content Based Recommendations(基于内容的推荐)
  • 1.获取特征向量 为了实现推荐,我们为每部电影提取出了两个特征值,即x1(浪漫指数)和x2(动作指数)

movie

Alice

Bob

Carol

Dave

x1

x2

Love at last

5

5

0

0

0.9

0.1

Romance forever

5

?

?

0

1.0

0

Cute Puppies of love

?

4

0

?

0.99

0.01

nonstop car chases

0

0

5

4

0.1

0.9

swords & karate

0

0

5

?

0

1.0

由上表可知每部电影都可以用一组特征向量表示:

  • 每一步电影都加上一个额外的特征,即 \(x_0=1\)
  • 每部电影都有一个(3,1)的特征向量,例如第一部电影(Love at last):\(x^{(1)}=[1,0.9,0.1]^T\)
  • 对于所有数据我们有数据特征向量组为\(\{x^{(1)},x^{(2)},x^{(3)},x^{(4)},x^{(5)}\}\)
  • 2.特征权重θ 用户j对电影i的评分预测可以表示为\((θ^j)^Tx^i=stars\)
  • 3. 线性回归预测

和线性回归一样,可以得到如下优化目标函数:

  • 对单个用户而言

\[\min_{θ^{(j)}}\frac{1}{2}\sum_{i;r(i,j)=1}((θ^{(j)})^Tx^{(i)}-y^{(i,j)})^2 + \frac{λ}{2}\sum_{k=1}^n (θ_k^{(j)})^2 \]

  • 对所有用户而言

\[\min_{θ^{(1)},...,θ^{(n_u)}}\frac{1}{2}\sum_{j=1}^{n_u}\sum_{i:r(i,j)=1}((θ^{(j)})^Tx^{(i)}-y^{(i,j)})^2 + \frac{λ}{2}\sum_{j=1}^{n_u}\sum_{k=1}^n (θ_k^{(j)})^2 \]

应用梯度下降:

\[当k=0,θ_k^{(j)}:=θ_k^{(j)}-α\sum_{i:r(i,j)=1}( (θ^{(j)})^Tx^{(i)}-y^{(i,j)} )x_k^{(i)}\] \[当k≠0,θ_k^{(j)}:=θ_k^{(j)}-α\sum_{i:r(i,j)=1}( (θ^{(j)})^Tx^{(i)}-y^{(i,j)} )x_k^{(i)}+λθ_k^{(j)}\]

2.Collaborative Filtering(协同过滤)

1)Collaborative Filtering

在之前的基于内容的推荐系统中,对于每一部电影,我们都掌握了可用的特征,使用这些特征训练出了每一个用户的参数。相反地,如果我们拥有用户的参数,我们可以学习得出电影的特征。即由θ求出x。

\[\min_{θ^{(1)},...,θ^{(n_m)}}\frac{1}{2}\sum_{j=1}^{n_u}\sum_{i:r(i,j)=1}((θ^{(j)})^Tx^{(i)}-y^{(i,j)})^2 + \frac{λ}{2}\sum_{j=1}^{n_m}\sum_{k=1}^n (θ_k^{(j)})^2 \]

注意累计符号的上限由\(n_u\)变成了\(n_m\)

但是如果我们既没有用户的参数也没有电影的特征该怎么办?这时协同过滤就可以起作用了,只需要对优化目标函数进行改进,如下:

\[J(x^{(1)},...,x^{(n_m)},θ^{(1)},...,θ^{(n_u)}) = \frac{1}{2}\sum_{(i,j):r(i,j)=1}((θ^{(j)})^Tx^{(i)}-y^{(i,j)})^2 \\ \quad\quad\quad\quad\quad\quad\quad +\frac{λ}{2}\sum_{j=1}^{n_u}\sum_{k=1}^n (θ_k^{(j)})^2 \\ \quad\quad\quad\quad\quad\quad\quad+ \frac{λ}{2}\sum_{i=1}^{n_m}\sum_{k=1}^n (x_k^{(i)})^2\]

对代价函数求偏导结果如下: \[x_k^{(i)} := x_k^{(i)} - α(\sum_{j:r(i,j)=1}( (θ^{(j)})^Tx^{(i)}-y^{(i,j)} )θ_k^{(j)} +λx_k^{(i)} ) \] \[θ_k^{(j)} := θ_k^{(j)} - α(\sum_{i:r(i,j)=1}( (θ^{(j)})^Tx^{(i)}-y^{(i,j)} )x_k^{(i)} +λθ_k^{(j)} ) \]

协同过滤算法使用步骤如下:

  1. 初始 x (1) ,x (2) ,...,x (\(n_m\)) ,θ (1) ,θ (2) ,...,θ (\(n_u\)) 为一些随机小值
  2. 使用梯度下降算法最小化代价函数
  3. 在训练完算法后,我们预测\((θ ^{(j)} )^ T x^{ (i)}\) 为用户 j 给电影 i 的评分

3. Low Rank Matrix Factorization(低秩矩阵分解)

1)Vectorization(向量化): Low Rank Matrix Factorizationv

movie

Alice

Bob

Carol

Dave

Love at last

5

5

0

0

Romance forever

5

?

?

0

Cute Puppies of love

?

4

0

?

nonstop car chases

0

0

5

4

swords & karate

0

0

5

?

(同样的例子)很显然我们可以得到评分矩阵Y \[Y= \left[ \begin{array}{cccc} 5&5&0&0 \\ 5&?&?&0 \\ ?&4&0&? \\ 0&0&5&4 \\ 0&0&5&0 \\ \end{array} \right] \]

推出评分 \[ \begin{pmatrix} (θ^{(1)})^T(x^{(1)}) &(θ^{(2)})^T(x^{(1)})& \cdots & (θ^{(n_u)})^T(x^{(1)}) \\ (θ^{(1)})^T(x^{(2)}) &(θ^{(2)})^T(x^{(2)})& \cdots & (θ^{(n_u)})^T(x^{(2)}) \\ \vdots & \vdots& \ddots & \vdots \\ (θ^{(1)})^T(x^{(n_m)}) &(θ^{(2)})^T(x^{(n_m)})& \cdots & (θ^{(n_u)})^T(x^{(n_m)}) \\ \end{pmatrix} \]

如何寻找与电影i相关的电影j呢?满足\(||x^{(i)}-x^{(j)}||\)较小的前几部影片即可。

2)Implementational Detail:Mean Normalization

假如增加了一个用户marsggbo,他很单纯,这5部电影都还没看过,所以没有评分数据,这是可以通过均值正则化来初始化数据,具体实现如下:

movie

Alice

Bob

Carol

Dave

Marsggbo

Love at last

5

5

0

0

Romance forever

5

?

?

0

Cute Puppies of love

?

4

0

?

nonstop car chases

0

0

5

4

swords & karate

0

0

5

?

此时的评分矩阵为 \[Y= \left[ \begin{array}{cccc} 5&5&0&0&? \\ 5&?&?&0&? \\ ?&4&0&?&? \\ 0&0&5&4&? \\ 0&0&5&0&? \\ \end{array} \right] \]

首先求出每行的均值(未评分不用计算) \[μ=\left[ \begin{array} 2.5 \\ 2.5 \\ 2 \\ 2.25 \\ 1.25 \end{array} \right]→ Y= \left[ \begin{array}{cccc} 2.5&2.5&-2.5&-2.5&? \\ 2.5&?&?&-2.5&? \\ ?&2&-2&?&? \\ -2.25& -2.25&2.75&1.75&? \\ -1.25&-1.25&3.75&-1.25&? \\ \end{array} \right] \]

预测值为\((θ^{(j)})^T(x^{(i)})+μ_i\),因为优没有评分。所以化目的函数只需要\(min\frac{λ}{2}\sum_{j=1}^{n_u}\sum_{k=1}^n (θ_k^{(j)})^2\),很显然\(θ=\vec0\),所以新增用户评分数据可初始化为均值,即 \[Y= \left[ \begin{array}{cccc} 5&5&0&0&2.5 \\ 5&?&?&0&2.5 \\ ?&4&0&?&2 \\ 0&0&5&4&2.25 \\ 0&0&5&0&1.25 \\ \end{array} \right] \]

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-08-25 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 一、内容概要
    • 1. Anomaly Detection
      • Recommender System(推荐系统)
        • 1.Predicting Movie
        • 2.Collaborative Filtering(协同过滤)
        • 3. Low Rank Matrix Factorization(低秩矩阵分解)
    领券
    问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档