前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络

DeepLearning.ai学习笔记(一)神经网络和深度学习--Week3浅层神经网络

作者头像
marsggbo
发布2018-01-23 18:34:51
5220
发布2018-01-23 18:34:51
举报

介绍 DeepLearning课程总共五大章节,该系列笔记将按照课程安排进行记录。 另外第一章的前两周的课程在之前的Andrew Ng机器学习课程笔记(博客园)&Andrew Ng机器学习课程笔记(CSDN)系列笔记中都有提到,所以这里不再赘述。 另外本系列课程也设有Jupyter Notebook形式练手项目,具体的可跳转至Coursera深度学习(DeepLearning.ai)课程习题--Python学习。

1、神经网络概要

注意:这一系列的课程中用中括号表示层数,例如\(a^{[1]}\)表示第二层(隐藏层)的数据。

2、神经网络表示

这个图的内容有点多,跟着下面的步骤来理解这个图吧:

  • 首先看蓝色字体,这个2层的神经网络(输入层一般理解成第0层)有输入层(input layer)、隐藏层(Hidden layer)、输出层(output layer)组成
  • 再看紫色字体,每一层用\(a^{[i]}, i=0,1...n\)表示,\(a^{[0]}\)表示输入层的所有数据。而下标则表示某一层的某一行的具体的数据,例如\(a^{[1]}_1\)表示隐藏层的第一个元素。
  • 最后是绿色字体,介绍的分别是\(w\)(权重)和\(b\)(偏置),其中\(w^{[1]}\)表示输入层到隐藏层的权重,其是(4,3)的矩阵,而\(b^{[1]}\)是(4,1)的矩阵。

3、计算神经网络的输出

这个比较简单就不做过多解释了,主要就是线性代数的知识。

4、多个例子中的向量化

还是以上面的神经网络为模型进行介绍,向量化过程如下: for i in range(m): \(\quad \quad z^{[1](i)}=W^{[1]}x^{(i)}+b^{[1]}\) \(\quad \quad a^{[1](i)}=σ(z^{[1](i)})\) \(\quad \quad z^{[2](i)}=W^{[2]}x^{(i)}+b^{[2]}\) \(\quad \quad a^{[2](i)}=σ(z^{[2](i)})\)

5、向量化实现的解释

上一节中使用了for循环和矩阵向量机,这里可以更加彻底地向量化,让运算更加简单,如下: \(Z^{[1]}=W^{[1]}X+b^{[1]}\) \(A^{[1]}=σ(Z^{[1]})\) \(Z^{[2]}=W^{[2]}X+b^{[2]}\) \(A^{[2]}=σ(Z^{[2]})\)

6、激活函数

常用的一共四个激活函数

  • (1): \(σ(z)=\frac{1}{1+e^{-z}}\),一般只用在二元分类的输出层,因为二元分类一般要求输出结果\(y∈{0,1}\),而σ函数刚好其阈值就在0,1之间。而其它层更加建议用其他的激活函数。所以一个神经网络可以使用多种激活函数(用\(g^{[i]}\)表示第i层的激活函数)
  • (2): \(tanh(z) = \frac{e^z-e^{-z}}{e^z+e^{-z}}\),上下界限分别是1-1。它相比于\(σ(z)\)表现更好的原因是因为它的均值在0附近,有数据中心化的效果,所以下一层在学习的时候要更加方便和快速。但是\(σ(z)\)和\(tanh(z)\)有一个共同的缺点,就是当z很大或很小的时候,它们的斜率就会趋向于0,这会使得梯度下降的学习速率降低。
  • (3): ReLu(The Rectified Linear Unit) 表达式是\(f(x)=max(0,x)\),它表现的效果是最好的,所以在不确定使用何种激活函数的时候就可以不顾一切的选择它~(难道这就是传说中的备胎?) 相比sigmoid和tanh函数,Relu激活函数的优点在于:
    • 梯度不饱和。梯度计算公式为:1{x>0}。因此在反向传播过程中,减轻了梯度弥散的问题,神经网络前几层的参数也可以很快的更新。
    • 计算速度快。正向传播过程中,sigmoid和tanh函数计算激活值时需要计算指数,而Relu函数仅需要设置阈值。如果x<0,f(x)=0,如果x>0,f(x)=x。加快了正向传播的计算速度。 因此,Relu激活函数可以极大地加快收敛速度,相比tanh函数,收敛速度可以加快6倍
  • (4): Leaky Relu,你也许发现了Relu激活函数在当z小于0的时候导数为0,虽然这在实践中并不影响,但是为了进一步优化提出了Leaky Relu,在z小于0时导数不为0.表达式一般为\(f(x)=max(0.01x,x)\)。其中0.01是一个可调的参数,类似于学习步长α

7、为什么需要非线性激活函数

如果不用激励函数(其实相当于激励函数是f(x) = x),在这种情况下你每一层输出都是上层输入的线性函数,很容易验证,无论你神经网络有多少层,输出都是输入的线性组合,与只有一个隐藏层效果相当,这种情况就是多层感知机(MLP)了。 正因为上面的原因,我们决定引入非线性函数作为激励函数,这样深层神经网络就有意义了(不再是输入的线性组合,可以逼近任意函数)。最早的想法是sigmoid函数或者tanh函数,输出有界,很容易充当下一层输入(以及一些人的生物解释balabala)。

8、激活函数的导数

  • \(σ'(z)=σ(z)(1-σ(z))\)
  • \(tanh'(z)=1-(tanh(z))^2\)
  • Relu:
    • \(Relu'(z) =1 \ when\ z≥0;\)
    • \(Relu'(z) = 0 \ when \ z<0\)

9、神经网络的梯度下降法

10、直观理解反向传播

9、10节的内容都是介绍的神经网络的计算过程,更加详细的可以参看Andrew Ng机器学习课程笔记--week5(上)(神经网络损失函数&反向传播算法)

11、随机初始化

在神经网络中,如果将参数全部初始化为0 会导致一个问题,例如对于上面的神经网络的例子,如果将参数全部初始化为0,在每轮参数更新的时候,与输入单元相关的两个隐藏单元的结果将是相同的,既:

\(a_1^{(2)}=a_2^{(2)}\)这个问题又称之为对称的权重问题,因此我们需要打破这种对称,这里提供一种随机初始化参数向量的方法: 初始化\(θ_{ij}^{(l)}\)为一个落在 [-ε,ε]区间内的随机数, 可以很小,但是与上面梯度检验( Gradient Checking)中的ε没有任何关系。

更加详细的介绍可参看Andrew Ng机器学习课程笔记--week5(下)(梯度检测&BP随机初始化)

参考资料: Deep learning系列(七)激活函数 神经网络为什么要有激活函数,为什么relu 能够防止梯度消失

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2017-08-30 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 1、神经网络概要
  • 2、神经网络表示
  • 3、计算神经网络的输出
  • 4、多个例子中的向量化
  • 5、向量化实现的解释
  • 6、激活函数
  • 7、为什么需要非线性激活函数
  • 8、激活函数的导数
  • 9、神经网络的梯度下降法
  • 10、直观理解反向传播
  • 11、随机初始化
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档