python常用模块

 python常用模块

什么是模块?

   常见的场景:一个模块就是一个包含了python定义和声明的文件,文件名就是模块名字加上.py的后缀。

   但其实import加载的模块分为四个通用类别: 

  1 使用python编写的代码(.py文件)

  2 已被编译为共享库或DLL的C或C++扩展

  3 包好一组模块的包

  4 使用C编写并链接到python解释器的内置模块

为何要使用模块?

   如果你退出python解释器然后重新进入,那么你之前定义的函数或者变量都将丢失,因此我们通常将程序写到文件中以便永久保存下来,需要时就通过python test.py方式去执行,此时test.py被称为脚本script。

    随着程序的发展,功能越来越多,为了方便管理,我们通常将程序分成一个个的文件,这样做程序的结构更清晰,方便管理。这时我们不仅仅可以把这些文件当做脚本去执行,还可以把他们当做模块来导入到其他的模块中,实现了功能的重复利用,

模块的导入和使用

模块的导入应该在程序开始的地方

更多相关内容  http://www.cnblogs.com/huchong/p/8321095.html

常用模块 

1.collections模块

在内置数据类型(dict、list、set、tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter、deque、defaultdict、namedtuple和OrderedDict等。

1.namedtuple: 生成可以使用名字来访问元素内容的tuple

2.deque: 双端队列,可以快速的从另外一侧追加和推出对象

3.Counter: 计数器,主要用来计数

4.OrderedDict: 有序字典

5.defaultdict: 带有默认值的字典

namedtuple

我们知道tuple可以表示不变集合,例如,一个点的二维坐标就可以表示成:

>>> p = (1, 2)

但是,看到(1, 2),很难看出这个tuple是用来表示一个坐标的。

这时,namedtuple就派上了用场:

>>> from collections import namedtuple
>>> Point = namedtuple('Point', ['x', 'y'])
>>> p = Point(1, 2)
>>> p.x
1
>>> p.y
2

类似的,如果要用坐标和半径表示一个圆,也可以用namedtuple定义:

#namedtuple('名称', [属性list]):
Circle = namedtuple('Circle', ['x', 'y', 'r'])

deque

使用list存储数据时,按索引访问元素很快,但是插入和删除元素就很慢了,因为list是线性存储,数据量大的时候,插入和删除效率很低。

deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈:

>>> from collections import deque
>>> q = deque(['a', 'b', 'c'])
>>> q.append('x')
>>> q.appendleft('y')
>>> q
deque(['y', 'a', 'b', 'c', 'x'])

deque除了实现list的append()pop()外,还支持appendleft()popleft(),这样就可以非常高效地往头部添加或删除元素。

OrderedDict

使用dict时,Key是无序的。在对dict做迭代时,我们无法确定Key的顺序。

如果要保持Key的顺序,可以用OrderedDict

>>> from collections import OrderedDict
>>> d = dict([('a', 1), ('b', 2), ('c', 3)])
>>> d # dict的Key是无序的
{'a': 1, 'c': 3, 'b': 2}
>>> od = OrderedDict([('a', 1), ('b', 2), ('c', 3)])
>>> od # OrderedDict的Key是有序的
OrderedDict([('a', 1), ('b', 2), ('c', 3)])

注意,OrderedDict的Key会按照插入的顺序排列,不是Key本身排序:

>>> od = OrderedDict()
>>> od['z'] = 1
>>> od['y'] = 2
>>> od['x'] = 3
>>> od.keys() # 按照插入的Key的顺序返回
['z', 'y', 'x']

defaultdict 

有如下值集合 [11,22,33,44,55,66,77,88,99,90...],将所有大于 66 的值保存至字典的第一个key中,将小于 66 的值保存至第二个key的值中。

即: {'k1': 大于66 , 'k2': 小于66}

values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = {}

for value in  values:
    if value>66:
        if my_dict.has_key('k1'):
            my_dict['k1'].append(value)
        else:
            my_dict['k1'] = [value]
    else:
        if my_dict.has_key('k2'):
            my_dict['k2'].append(value)
        else:
            my_dict['k2'] = [value]
from collections import defaultdict

values = [11, 22, 33,44,55,66,77,88,99,90]

my_dict = defaultdict(list)

for value in  values:
    if value>66:
        my_dict['k1'].append(value)
    else:
        my_dict['k2'].append(value)

使用dict时,如果引用的Key不存在,就会抛出KeyError。如果希望key不存在时,返回一个默认值,就可以用defaultdict

例2

Counter

Counter类的目的是用来跟踪值出现的次数。它是一个无序的容器类型,以字典的键值对形式存储,其中元素作为key,其计数作为value。计数值可以是任意的Interger(包括0和负数)。Counter类和其他语言的bags或multisets很相似。

c = Counter('abcdeabcdabcaba')
print c
输出:Counter({'a': 5, 'b': 4, 'c': 3, 'd': 2, 'e': 1})
其他详细内容 http://www.cnblogs.com/Eva-J/articles/7291842.html

2.时间模块

和时间有关系的我们就要用到时间模块。在使用模块之前,应该首先导入这个模块。

#常用方法
1.time.sleep(secs)
(线程)推迟指定的时间运行。单位为秒。
2.time.time()
获取当前时间戳

表示时间的三种方式

在Python中,通常有这三种方式来表示时间:时间戳、元组(struct_time)、格式化的时间字符串:

(1)时间戳(timestamp) :通常来说,时间戳表示的是从1970年1月1日00:00:00开始按秒计算的偏移量。我们运行“type(time.time())”,返回的是float类型。

(2)格式化的时间字符串(Format String): ‘1999-12-06’

%y 两位数的年份表示(00-99)
%Y 四位数的年份表示(000-9999)
%m 月份(01-12)
%d 月内中的一天(0-31)
%H 24小时制小时数(0-23)
%I 12小时制小时数(01-12)
%M 分钟数(00=59)
%S 秒(00-59)
%a 本地简化星期名称
%A 本地完整星期名称
%b 本地简化的月份名称
%B 本地完整的月份名称
%c 本地相应的日期表示和时间表示
%j 年内的一天(001-366)
%p 本地A.M.或P.M.的等价符
%U 一年中的星期数(00-53)星期天为星期的开始
%w 星期(0-6),星期天为星期的开始
%W 一年中的星期数(00-53)星期一为星期的开始
%x 本地相应的日期表示
%X 本地相应的时间表示
%Z 当前时区的名称
%% %号本身

(3)元组(struct_time) :struct_time元组共有9个元素共九个元素:(年,月,日,时,分,秒,一年中第几周,一年中第几天等)

索引(Index)

属性(Attribute)

值(Values)

0

tm_year(年)

比如2011

1

tm_mon(月)

1 - 12

2

tm_mday(日)

1 - 31

3

tm_hour(时)

0 - 23

4

tm_min(分)

0 - 59

5

tm_sec(秒)

0 - 61

6

tm_wday(weekday)

0 - 6(0表示周日)

7

tm_yday(一年中的第几天)

1 - 366

8

tm_isdst(是否是夏令时)

默认为-1

 首先,我们先导入time模块,来认识一下python中表示时间的几种格式:

#导入时间模块
>>>import time

#时间戳
>>>time.time()
1500875844.800804

#时间字符串
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 13:54:37'
>>>time.strftime("%Y-%m-%d %H-%M-%S")
'2017-07-24 13-55-04'

#时间元组:localtime将一个时间戳转换为当前时区的struct_time
time.localtime()
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24,
          tm_hour=13, tm_min=59, tm_sec=37, 
                 tm_wday=0, tm_yday=205, tm_isdst=0)

小结:时间戳是计算机能够识别的时间;时间字符串是人能够看懂的时间;元组则是用来操作时间的

几种格式之间的转换

#时间戳-->结构化时间
#time.gmtime(时间戳)    #UTC时间,与英国伦敦当地时间一致
#time.localtime(时间戳) #当地时间。例如我们现在在北京执行这个方法:与UTC时间相差8小时,UTC时间+8小时 = 北京时间 
>>>time.gmtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=2, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)
>>>time.localtime(1500000000)
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=14, tm_hour=10, tm_min=40, tm_sec=0, tm_wday=4, tm_yday=195, tm_isdst=0)

#结构化时间-->时间戳 
#time.mktime(结构化时间)
>>>time_tuple = time.localtime(1500000000)
>>>time.mktime(time_tuple)
1500000000.0
#结构化时间-->字符串时间
#time.strftime("格式定义","结构化时间")  结构化时间参数若不传,则现实当前时间
>>>time.strftime("%Y-%m-%d %X")
'2017-07-24 14:55:36'
>>>time.strftime("%Y-%m-%d",time.localtime(1500000000))
'2017-07-14'

#字符串时间-->结构化时间
#time.strptime(时间字符串,字符串对应格式)
>>>time.strptime("2017-03-16","%Y-%m-%d")
time.struct_time(tm_year=2017, tm_mon=3, tm_mday=16, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=3, tm_yday=75, tm_isdst=-1)
>>>time.strptime("07/24/2017","%m/%d/%Y")
time.struct_time(tm_year=2017, tm_mon=7, tm_mday=24, tm_hour=0, tm_min=0, tm_sec=0, tm_wday=0, tm_yday=205, tm_isdst=-1)
#结构化时间 --> %a %b %d %H:%M:%S %Y串
#time.asctime(结构化时间) 如果不传参数,直接返回当前时间的格式化串
>>>time.asctime(time.localtime(1500000000))
'Fri Jul 14 10:40:00 2017'
>>>time.asctime()
'Mon Jul 24 15:18:33 2017'

#%a %d %d %H:%M:%S %Y串 --> 结构化时间
#time.ctime(时间戳)  如果不传参数,直接返回当前时间的格式化串
>>>time.ctime()
'Mon Jul 24 15:19:07 2017'
>>>time.ctime(1500000000)
'Fri Jul 14 10:40:00 2017' 

3.random模块

>>> import random
#随机小数
>>> random.random()      # 大于0且小于1之间的小数
0.7664338663654585
>>> random.uniform(1,3) #大于1小于3的小数
1.6270147180533838

#随机整数
>>> random.randint(1,5)  # 大于等于1且小于等于5之间的整数   (首尾兼顾)
>>> random.randrange(1,10,2) # (随机取1,3,5,7,9,即使步长为1也取不到10,因为顾头不顾尾)   (顾头不顾尾,第三位是步长,)


#随机选择一个返回
>>> random.choice([1,'23',[4,5]])  # #1或者23或者[4,5]
#随机选择多个返回,返回的个数为函数的第二个参数
>>> random.sample([1,'23',[4,5]],2) # #列表元素任意2个组合  (一次任意选取两个元素返回,不是任意选取两次组成一个列表,所以这样选取的两个元素不会重复)
[[4, 5], '23']


#打乱列表顺序
>>> item=[1,3,5,7,9]
>>> random.shuffle(item) # 打乱次序
>>> item
[5, 1, 3, 7, 9]
>>> random.shuffle(item)
>>> item
[5, 9, 7, 1, 3]

练习:生成随机验证码

import random

def v_code():

    code = ''
    for i in range(5):

        num=random.randint(0,9)
        alf=chr(random.randint(65,90))
        add=random.choice([num,alf])
        code="".join([code,str(add)])

    return code

print(v_code())

4.sys模块

sys模块是与python解释器交互的一个接口

sys.argv           命令行参数List,第一个元素是程序本身路径
sys.exit(n)        退出程序,正常退出时exit(0)
sys.version        获取Python解释程序的版本信息
sys.maxint         最大的Int值
sys.path           返回模块的搜索路径,初始化时使用PYTHONPATH环境变量的值
sys.platform       返回操作系统平台名称

5.os模块

 os模块是与操作系统交互的一个接口

'''
os.getcwd() 获取当前工作目录,即当前python脚本工作的目录路径
os.chdir("dirname")  改变当前脚本工作目录;相当于shell下cd
os.curdir  返回当前目录: ('.')
os.pardir  获取当前目录的父目录字符串名:('..')
os.makedirs('dirname1/dirname2')    可生成多层递归目录
os.removedirs('dirname1')    若目录为空,则删除,并递归到上一级目录,如若也为空,则删除,依此类推
os.mkdir('dirname')    生成单级目录;相当于shell中mkdir dirname
os.rmdir('dirname')    删除单级空目录,若目录不为空则无法删除,报错;相当于shell中rmdir dirname
os.listdir('dirname')    列出指定目录下的所有文件和子目录,包括隐藏文件,并以列表方式打印
os.remove()  删除一个文件
os.rename("oldname","newname")  重命名文件/目录
os.stat('path/filename')  获取文件/目录信息
os.sep    输出操作系统特定的路径分隔符,win下为"\\",Linux下为"/"
os.linesep    输出当前平台使用的行终止符,win下为"\t\n",Linux下为"\n"
os.pathsep    输出用于分割文件路径的字符串 win下为;,Linux下为:
os.name    输出字符串指示当前使用平台。win->'nt'; Linux->'posix'
os.system("bash command")  运行shell命令,直接显示
os.popen("bash command)  运行shell命令,获取执行结果
os.environ  获取系统环境变量

注意:os.stat('path/filename') 获取文件/目录信息 的结构说明

stat 结构:

st_mode: inode 保护模式
st_ino: inode 节点号。
st_dev: inode 驻留的设备。
st_nlink: inode 的链接数。
st_uid: 所有者的用户ID。
st_gid: 所有者的组ID。
st_size: 普通文件以字节为单位的大小;包含等待某些特殊文件的数据。
st_atime: 上次访问的时间。
st_mtime: 最后一次修改的时间。
st_ctime: 由操作系统报告的"ctime"。在某些系统上(如Unix)是最新的元数据更改的时间,在其它系统上(如Windows)是创建时间(详细信息参见平台的文档)。

6.序列化模块

什么叫序列化——将原本的字典、列表等内容转换成一个字符串的过程就叫做序列化

比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给?
现在我们能想到的方法就是存在文件里,然后另一个python程序再从文件里读出来。
但是我们都知道,对于文件来说是没有字典这个概念的,所以我们只能将数据转换成字典放到文件中。
你一定会问,将字典转换成一个字符串很简单,就是str(dic)就可以办到了,为什么我们还要学习序列化模块呢?
没错序列化的过程就是从dic 变成str(dic)的过程。现在你可以通过str(dic),将一个名为dic的字典转换成一个字符串,
但是你要怎么把一个字符串转换成字典呢?
聪明的你肯定想到了eval(),如果我们将一个字符串类型的字典str_dic传给eval,就会得到一个返回的字典类型了。
eval()函数十分强大,但是eval是做什么的?e官方demo解释为:将字符串str当成有效的表达式来求值并返回计算结果。
BUT!强大的函数有代价。安全性是其最大的缺点。
想象一下,如果我们从文件中读出的不是一个数据结构,而是一句"删除文件"类似的破坏性语句,那么后果实在不堪设设想。
而使用eval就要担这个风险。
所以,我们并不推荐用eval方法来进行反序列化操作(将str转换成python中的数据结构)

序列化的目的

1、以某种存储形式使自定义对象持久化

2、将对象从一个地方传递到另一个地方。

3、使程序更具维护性。

json

Json模块提供了四个功能:dumps、dump、loads、load

import json
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = json.dumps(dic)  #序列化:将一个字典转换成一个字符串
print(type(str_dic),str_dic)  #<class 'str'> {"k3": "v3", "k1": "v1", "k2": "v2"}
#注意,json转换完的字符串类型的字典中的字符串是由""表示的

dic2 = json.loads(str_dic)  #反序列化:将一个字符串格式的字典转换成一个字典
#注意,要用json的loads功能处理的字符串类型的字典中的字符串必须由""表示
print(type(dic2),dic2)  #<class 'dict'> {'k1': 'v1', 'k2': 'v2', 'k3': 'v3'}


list_dic = [1,['a','b','c'],3,{'k1':'v1','k2':'v2'}]
str_dic = json.dumps(list_dic) #也可以处理嵌套的数据类型 
print(type(str_dic),str_dic) #<class 'str'> [1, ["a", "b", "c"], 3, {"k1": "v1", "k2": "v2"}]
list_dic2 = json.loads(str_dic)
print(type(list_dic2),list_dic2) #<class 'list'> [1, ['a', 'b', 'c'], 3, {'k1': 'v1', 'k2': 'v2'}]
import json
f = open('json_file','w')
dic = {'k1':'v1','k2':'v2','k3':'v3'}
json.dump(dic,f)  #dump方法接收一个文件句柄,直接将字典转换成json字符串写入文件
f.close()

f = open('json_file')
dic2 = json.load(f)  #load方法接收一个文件句柄,直接将文件中的json字符串转换成数据结构返回
f.close()
print(type(dic2),dic2)

pickle

json & pickle 模块

用于序列化的两个模块

  • json,用于字符串 和 python数据类型间进行转换
  • pickle,用于python特有的类型 和 python的数据类型间进行转换

pickle模块提供了四个功能:dumps、dump(序列化,存)、loads(反序列化,读)、load  (不仅可以序列化字典,列表...可以把python中任意的数据类型序列化

import pickle
dic = {'k1':'v1','k2':'v2','k3':'v3'}
str_dic = pickle.dumps(dic)
print(str_dic)  #一串二进制内容

dic2 = pickle.loads(str_dic)
print(dic2)    #字典

import time
struct_time  = time.localtime(1000000000)
print(struct_time)
f = open('pickle_file','wb')
pickle.dump(struct_time,f)
f.close()

f = open('pickle_file','rb')
struct_time2 = pickle.load(f)
print(struct_time.tm_year)

这时候机智的你又要说了,既然pickle如此强大,为什么还要学json呢? 这里我们要说明一下,json是一种所有的语言都可以识别的数据结构。 如果我们将一个字典或者序列化成了一个json存在文件里,那么java代码或者js代码也可以拿来用。 但是如果我们用pickle进行序列化,其他语言就不能读懂这是什么了~ 所以,如果你序列化的内容是列表或者字典,我们非常推荐你使用json模块 但如果出于某种原因你不得不序列化其他的数据类型,而未来你还会用python对这个数据进行反序列化的话,那么就可以使用pickle

shelve

shelve也是python提供给我们的序列化工具,比pickle用起来更简单一些。 shelve只提供给我们一个open方法,是用key来访问的,使用起来和字典类似。

import shelve
f = shelve.open('shelve_file')
f['key'] = {'int':10, 'float':9.5, 'string':'Sample data'}  #直接对文件句柄操作,就可以存入数据
f.close()

import shelve
f1 = shelve.open('shelve_file')
existing = f1['key']  #取出数据的时候也只需要直接用key获取即可,但是如果key不存在会报错
f1.close()
print(existing)

这个模块有个限制,它不支持多个应用同一时间往同一个DB进行写操作。所以当我们知道我们的应用如果只进行读操作,我们可以让shelve通过只读方式打开DB

import shelve
f = shelve.open('shelve_file', flag='r')
existing = f['key']
f.close()
print(existing)

由于shelve在默认情况下是不会记录待持久化对象的任何修改的,所以我们在shelve.open()时候需要修改默认参数,否则对象的修改不会保存。

import shelve
f1 = shelve.open('shelve_file')
print(f1['key'])
f1['key']['new_value'] = 'this was not here before'
f1.close()

f2 = shelve.open('shelve_file', writeback=True)
print(f2['key'])
f2['key']['new_value'] = 'this was not here before'
f2.close()

writeback方式有优点也有缺点。优点是减少了我们出错的概率,并且让对象的持久化对用户更加的透明了;但这种方式并不是所有的情况下都需要,首先,使用writeback以后,shelf在open()的时候会增加额外的内存消耗,并且当DB在close()的时候会将缓存中的每一个对象都写入到DB,这也会带来额外的等待时间。因为shelve没有办法知道缓存中哪些对象修改了,哪些对象没有修改,因此所有的对象都会被写入。

7.re模块和正则表达式,hashlib模块,configparser模块,logging模块

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Python中文社区

Python3.6新特性官方文档中文版

原文:What’s New In Python 3.6 翻译团队:Py字幕组 首发刊物:PyCN技术评论(点击菜单栏:社区-刊物进入) Github:htt...

63690
来自专栏沈唁志

基于ThinkPHP中App(通信)接口开发封装JSON数据 并读取JSON数据的封装

1.1K20
来自专栏黑白安全

php代码审计之弱类型引发的灾难

有人说php是世界上最好的语言,这可能是对开发人员来说,确实有这方面的特点,因为它开发起来不像其他语言那样麻烦,就比如:弱类型,它不需要像java等语言那样明确...

9420
来自专栏滕先生的博客

runtime官方文档翻译版本通过OC源代码通过NSObject中定义的方法直接调用运行时的函数消息传递机制使用隐藏参数获取方法地址动态方法解析动态加载消息转发转发和多继承代理对象转发和继承类型编码声

29670
来自专栏游戏开发那些事

【游戏开发】小白学Lua(上)

  在很多游戏中,脚本语言是不可或缺的一部分,很多游戏都使用到了Lua,js,python一类的脚本,脚本语言可以在很多方面给开发进程带来帮助。脚本语言可以作为...

17120
来自专栏十月梦想

ES6语法基础之let用法

简单讲解一些ES6语法基础!了解一些es6新特性!当然下一步需要学习的vue框架也是基于es6的,因此很有必要学习下es6语法,接下来几次简单讲解es6语法!

11530
来自专栏PHP在线

PHP 底层的运行机制与原理

原文出处: nowamagic 欢迎分享原创到伯乐头条 PHP说简单,但是要精通也不是一件简单的事。我们除了会使用之外,还得知道它底层的工作原理。 PHP是...

47170
来自专栏杂烩

duubo分组聚合 原

除了官网上有这部分的简单介绍外,在别的地方几乎找到真正可行的测试了,这里自己捣鼓一下,已做备忘。

9010
来自专栏java一日一条

8种常见的Java不规范代码

在工作上,我最近对一个现有的Java项目代码进行了清理。完成之后,我发现了一些反复出现的不规范代码。所以,我把它们整理成了一个列表出来分享给我的同行希望能引起注...

15110
来自专栏java一日一条

8种常见的Java不规范代码

在工作上,我最近对一个现有的Java项目代码进行了清理。完成之后,我发现了一些反复出现的不规范代码。所以,我把它们整理成了一个列表出来分享给我的同行希望能引起注...

8310

扫码关注云+社区

领取腾讯云代金券