上次我们使用精度评估得到的成绩是 61%,成绩并不理想,再使 recall 和 f1 看下成绩如何?
首先我们先了解一下 召回率和 f1。
真实结果 | 预测结果 | 预测结果 |
---|---|---|
正例 | 反例 | |
正例 | TP 真正例 | FN 假反例 |
反例 | FP 假正例 | TN 真反例 |
召回率:TP/(TP+FN)
f1:2TP/(2TP+FN+FP)
我们使用scikit-learn的分类报告来查看各种其他指标:
现在我们来介绍一下缩放和中心化,他们是预处理数值数据最基本的方法,接下来,看看它们是否对模型有影响,以及怎样的影响。
在运行模型(如回归(预测连续变量)或分类(预测离散变量))之前,我们还是需要对数据进行一些预处理。对于数值变量,规范化或标准化数据是很常见的。这些术语是什么意思?
规范化手段就是缩放数据集,使其数据取值的范围压缩到0,1。我们的做法就是转换每个数据点:规范化结果=(数据点-数据最小值)/(数据最大值-数据最小值)。
标准化则略有不同, 它的最终结果就是将数据集中在0左右,并按照标准偏差进行缩放:标准化结果=(数据点-均值)/标准差。
有一点需要强调,这些转换只是改变了数据的范围而不是分布。当然,你也可以根据自己的需要使用其他的转换方式(如对数转换换或正太转换)来达到数据的高斯分布形式(如钟形曲线)。
现在我们思考几个重要的问题:
下面我们就具体看下缩放对 KNN 的影响。
下面是我们的处理步骤
使用scikit-learn的缩放函数,它会将传给它的数组中所有的特征(列)标准化。
通过上面的处理之后提高了0.1,这就说明预处理的很成功,同时也说明预处理很重要!!!如上所述,在缩放之前,存在许多具有不同数量级范围的预测变量,这意味着它们中的某一个或几个可能在,如 KNN 算法处理中占主导地位。缩放数据的一般是基于以下两个原因:
到目前位置,我们已经了解了缩放和中心化在整个机器学习中的基本位置,我们这样做主要的目的就是提高机器学习的学习能力。我希望后续,我能和大家分享一些其他类型的预处理。在进入这个之前,在下一篇文章中,我将探讨缩放在回归分类方法中的作用。
最后,有兴趣的同学可以自行设置 KNN 的 n_neighbors 变量,然后观察一下 n_neighbors 对机器学习的影响。
代码:
import pandas as pd
%matplotlib inline
import matplotlib.pyplot as plt
#from sklearn.cross_validation import train_test_split
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from sklearn import neighbors, linear_model
plt.style.use('ggplot')
df = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/wine-quality/winequality-red.csv ' , sep = ';')
# 删除目标结果
X = df.drop('quality' , 1).values
y1 = df['quality'].values
pd.DataFrame.hist(df, figsize = [15,15]);
df.describe()
# 使用 5 作为边界进行分类
y = y1 <= 5
# 原始目标结果和二分类之后的目标结果
plt.figure(figsize=(20,5));
plt.subplot(1, 2, 1 );
plt.hist(y1);
plt.xlabel('original target value')
plt.ylabel('count')
plt.subplot(1, 2, 2);
plt.hist(y)
plt.xlabel('two-category target value')
plt.show()
# 切分测试数据与训练数据
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
knn = neighbors.KNeighborsClassifier(n_neighbors = 5)
knn_model_1 = knn.fit(X_train, y_train)
print('k-NN accuracy: {}'.format(knn_model_1.score(X_test, y_test)))
# 其他评估评分
y_true, y_pred = y_test, knn_model_1.predict(X_test)
print(classification_report(y_true, y_pred))
# 预处理数据
Xs = scale(X)
# 切分测试数据与训练数据
Xs_train, Xs_test, y_train, y_test = train_test_split(Xs, y, test_size=0.2, random_state=42)
# 可以通过设置 n_neighbors 来进行训练
knn = neighbors.KNeighborsClassifier(n_neighbors = 5)
knn_model_2 = knn.fit(Xs_train, y_train)
print('k-NN test: %f' % knn_model_2.score(Xs_test, y_test))
print('k-NN training: %f' % knn_model_2.score(Xs_train, y_train))
y_true, y_pred = y_test, knn_model_2.predict(Xs_test)
print(classification_report(y_true, y_pred))
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
原创声明:本文系作者授权腾讯云开发者社区发表,未经许可,不得转载。
如有侵权,请联系 cloudcommunity@tencent.com 删除。
扫码关注腾讯云开发者
领取腾讯云代金券
Copyright © 2013 - 2025 Tencent Cloud. All Rights Reserved. 腾讯云 版权所有
深圳市腾讯计算机系统有限公司 ICP备案/许可证号:粤B2-20090059 深公网安备号 44030502008569
腾讯云计算(北京)有限责任公司 京ICP证150476号 | 京ICP备11018762号 | 京公网安备号11010802020287
Copyright © 2013 - 2025 Tencent Cloud.
All Rights Reserved. 腾讯云 版权所有