前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >从零开始用Python构造决策树(附公式、代码)

从零开始用Python构造决策树(附公式、代码)

作者头像
数据派THU
发布2018-01-29 19:28:01
1.7K0
发布2018-01-29 19:28:01
举报
文章被收录于专栏:数据派THU

来源:Python中文社区

作者:weapon

本文长度为700字,建议阅读5分钟

本文介绍如何不利用第三方库,仅用python自带的标准库来构造一个决策树。

起步

熵的计算:

根据计算公式:

对应的 python 代码:

条件熵的计算:

根据计算方法:

对应的 python 代码:

其中参数 future_list 是某一特征向量组成的列表,result_list 是 label 列表。

信息增益:

根据信息增益的计算方法:

对应的python代码:

定义决策树的节点

作为树的节点,要有左子树和右子树是必不可少的,除此之外还需要其他信息:

树的节点会有两种状态,叶子节点中 results 属性将保持当前的分类结果。非叶子节点中, col 保存着该节点计算的特征索引,根据这个索引来创建左右子树。

has_calc_index 属性表示在到达此节点时,已经计算过的特征索引。特征索引的数据集上表现是列的形式,如数据集(不包含结果集):

有三条数据,三个特征,那么第一个特征对应了第一列 [1, 0, 0] ,它的索引是 0 。

递归的停止条件

本章将构造出完整的决策树,所以递归的停止条件是所有待分析的训练集都属于同一类:

从训练集中筛选最佳的特征:

因此计算节点就是调用 best_index = choose_best_future(node.data_set, node.labels, node.has_calc_index) 来获取最佳的信息增益的特征索引。

构造决策树

决策树中需要一个属性来指向树的根节点,以及特征数量。不需要保存训练集和结果集,因为这部分信息是保存在树的节点中的。

创建决策树:

这里需要递归来创建决策树:

根据信息增益的特征索引将训练集再划分为左右两个子树。

训练函数

也就是要有一个 fit 函数:

清理训练集

训练后,树节点中数据集和结果集等就没必要的,该模型只要 col 和 result 就可以了:

预测函数

提供一个预测函数:

测试

数据集使用前面《应用篇》中的向量化的训练集:

编辑:黄继彦

校对:朱江华峰

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2017-12-18,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据派THU 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档