前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >(70) 原子变量和CAS / 计算机程序的思维逻辑

(70) 原子变量和CAS / 计算机程序的思维逻辑

作者头像
swiftma
发布2018-01-31 17:47:43
7290
发布2018-01-31 17:47:43
举报

从本节开始,我们探讨Java并发工具包java.util.concurrent中的内容,本节先介绍最基本的原子变量及其背后的原理和思维。 原子变量 什么是原子变量?为什么需要它们呢? 在理解synchronized一节,我们介绍过一个Counter类,使用synchronized关键字保证原子更新操作,代码如下:

public class Counter { private int count; public synchronized void incr(){ count ++; } public synchronized int getCount() { return count; } }

对于count++这种操作来说,使用synchronzied成本太高了,需要先获取锁,最后还要释放锁,获取不到锁的情况下还要等待,还会有线程的上下文切换,这些都需要成本。 对于这种情况,完全可以使用原子变量代替,Java并发包中的基本原子变量类型有:

  • AtomicBoolean:原子Boolean类型
  • AtomicInteger:原子Integer类型
  • AtomicLong:原子Long类型
  • AtomicReference:原子引用类型

这是我们主要介绍的类,除了这四个类,还有一些其他的类,我们也会进行简要介绍。 针对Integer, Long和Reference类型,还有对应的数组类型:

  • AtomicIntegerArray
  • AtomicLongArray
  • AtomicReferenceArray

为了便于以原子方式更新对象中的字段,还有如下的类:

  • AtomicIntegerFieldUpdater
  • AtomicLongFieldUpdater
  • AtomicReferenceFieldUpdater

AtomicReference还有两个类似的类,在某些情况下更为易用:

  • AtomicMarkableReference
  • AtomicStampedReference

你可能会发现,怎么没有针对char, short, float, double类型的原子变量呢?大概是用的比较少吧,如果需要,可以转换为int/long,然后使用AtomicInteger或AtomicLong。比如,对于float,可以使用如下方法和int相互转换:

public static int floatToIntBits(float value) public static float intBitsToFloat(int bits);

下面,我们先来看几个基本原子类型,从AtomicInteger开始。 AtomicInteger 基本用法 AtomicInteger有两个构造方法:

public AtomicInteger(int initialValue) public AtomicInteger()

第一个构造方法给定了一个初始值,第二个的初始值为0。 可以直接获取或设置AtomicInteger中的值,方法是:

public final int get() public final void set(int newValue)

之所以称为原子变量,是因为其包含一些以原子方式实现组合操作的方法,比如:

//以原子方式获取旧值并设置新值 public final int getAndSet(int newValue) //以原子方式获取旧值并给当前值加1 public final int getAndIncrement() //以原子方式获取旧值并给当前值减1 public final int getAndDecrement() //以原子方式获取旧值并给当前值加delta public final int getAndAdd(int delta) //以原子方式给当前值加1并获取新值 public final int incrementAndGet() //以原子方式给当前值减1并获取新值 public final int decrementAndGet() //以原子方式给当前值加delta并获取新值 public final int addAndGet(int delta)

这些方法的实现都依赖另一个public方法:

public final boolean compareAndSet(int expect, int update)

这是一个非常重要的方法,比较并设置,我们以后将简称为CAS。该方法以原子方式实现了如下功能:如果当前值等于expect,则更新为update,否则不更新,如果更新成功,返回true,否则返回false。 AtomicInteger可以在程序中用作一个计数器,多个线程并发更新,也总能实现正确性,我们看个例子:

public class AtomicIntegerDemo { private static AtomicInteger counter = new AtomicInteger(0); static class Visitor extends Thread { @Override public void run() { for (int i = 0; i < 100; i++) { counter.incrementAndGet(); Thread.yield(); } } } public static void main(String[] args) throws InterruptedException { int num = 100; Thread[] threads = new Thread[num]; for (int i = 0; i < num; i++) { threads[i] = new Visitor(); threads[i].start(); } for (int i = 0; i < num; i++) { threads[i].join(); } System.out.println(counter.get()); } }

程序的输出总是正确的,为10000。 基本原理和思维 AtomicInteger的使用方法是简单直接的,它是怎么实现的呢?它的主要内部成员是:

private volatile int value;

注意,它的声明带有volatile,这是必需的,以保证内存可见性。 它的大部分更新方法实现都类似,我们看一个方法incrementAndGet,其代码为:

public final int incrementAndGet() { for (;;) { int current = get(); int next = current + 1; if (compareAndSet(current, next)) return next; } }

代码主体是个死循环,先获取当前值current,计算期望的值next,然后调用CAS方法进行更新,如果当前值没有变,则更新并返回新值,否则继续循环直到更新成功为止。 与synchronized锁相比,这种原子更新方式代表一种不同的思维方式。 synchronized是悲观的,它假定更新很可能冲突,所以先获取锁,得到锁后才更新。原子变量的更新逻辑是乐观的,它假定冲突比较少,但使用CAS更新,也就是进行冲突检测,如果确实冲突了,那也没关系,继续尝试就好了。 synchronized代表一种阻塞式算法,得不到锁的时候,进入锁等待队列,等待其他线程唤醒,有上下文切换开销。原子变量的更新逻辑是非阻塞式的,更新冲突的时候,它就重试,不会阻塞,不会有上下文切换开销。 对于大部分比较简单的操作,无论是在低并发还是高并发情况下,这种乐观非阻塞方式的性能都要远高于悲观阻塞式方式。 原子变量是比较简单的,但对于复杂一些的数据结构和算法,非阻塞方式往往难于实现和理解,幸运的是,Java并发包中已经提供了一些非阻塞容器,我们只需要会使用就可以了,比如:

  • ConcurrentLinkedQueue和ConcurrentLinkedDeque:非阻塞并发队列
  • ConcurrentSkipListMap和ConcurrentSkipListSet:非阻塞并发Map和Set

这些容器我们在后续章节介绍。 但compareAndSet是怎么实现的呢?我们看代码:

public final boolean compareAndSet(int expect, int update) { return unsafe.compareAndSwapInt(this, valueOffset, expect, update); }

它调用了unsafe的compareAndSwapInt方法,unsafe是什么呢?它的类型为sun.misc.Unsafe,定义为:

private static final Unsafe unsafe = Unsafe.getUnsafe();

它是Sun的私有实现,从名字看,表示的也是"不安全",一般应用程序不应该直接使用。原理上,一般的计算机系统都在硬件层次上直接支持CAS指令,而Java的实现都会利用这些特殊指令。从程序的角度看,我们可以将compareAndSet视为计算机的基本操作,直接接纳就好。 实现锁 基于CAS,除了可以实现乐观非阻塞算法,它也可以用来实现悲观阻塞式算法,比如锁,实际上,Java并发包中的所有阻塞式工具、容器、算法也都是基于CAS的 (不过,也需要一些别的支持)。

怎么实现呢?我们演示一个简单的例子,用AtomicInteger实现一个锁MyLock,代码如下:

public class MyLock { private AtomicInteger status = new AtomicInteger(0); public void lock() { while (!status.compareAndSet(0, 1)) { Thread.yield(); } } public void unlock() { status.compareAndSet(1, 0); } }

在MyLock中,使用status表示锁的状态,0表示未锁定,1表示锁定,lock()/unlock()使用CAS方法更新,lock()只有在更新成功后才退出,实现了阻塞的效果,不过一般而言,这种阻塞方式过于消耗CPU,有更为高效的方式,我们后续章节介绍。MyLock只是用于演示基本概念,实际开发中应该使用Java并发包中的类如ReentrantLock。 AtomicBoolean/AtomicLong/AtomicReference AtomicBoolean/AtomicLong/AtomicReference的用法和原理与AtomicInteger是类似的,我们简要介绍下。 AtomicBoolean AtomicBoolean可以用来在程序中表示一个标志位,它的原子操作方法有:

public final boolean compareAndSet(boolean expect, boolean update) public final boolean getAndSet(boolean newValue)

实际上,AtomicBoolean内部使用的也是int类型的值,用1表示true, 0表示false,比如,其CAS方法代码为:

public final boolean compareAndSet(boolean expect, boolean update) { int e = expect ? 1 : 0; int u = update ? 1 : 0; return unsafe.compareAndSwapInt(this, valueOffset, e, u); }

AtomicLong AtomicBoolean可以用来在程序中生成唯一序列号,它的方法与AtomicInteger类似,就不赘述了。它的CAS方法调用的是unsafe的另一个方法,如:

public final boolean compareAndSet(long expect, long update) { return unsafe.compareAndSwapLong(this, valueOffset, expect, update); }

AtomicReference AtomicReference用来以原子方式更新复杂类型,它有一个类型参数,使用时需要指定引用的类型。以下代码演示了其基本用法:

public class AtomicReferenceDemo { static class Pair { final private int first; final private int second; public Pair(int first, int second) { this.first = first; this.second = second; } public int getFirst() { return first; } public int getSecond() { return second; } } public static void main(String[] args) { Pair p = new Pair(100, 200); AtomicReference<Pair> pairRef = new AtomicReference<>(p); pairRef.compareAndSet(p, new Pair(200, 200)); System.out.println(pairRef.get().getFirst()); } }

AtomicReference的CAS方法调用的是unsafe的另一个方法:

public final boolean compareAndSet(V expect, V update) { return unsafe.compareAndSwapObject(this, valueOffset, expect, update); }

原子数组 原子数组方便以原子的方式更新数组中的每个元素,我们以AtomicIntegerArray为例来简要介绍下。 它有两个构造方法:

public AtomicIntegerArray(int length) public AtomicIntegerArray(int[] array)

第一个会创建一个长度为length的空数组。第二个接受一个已有的数组,但不会直接操作该数组,而是会创建一个新数组,只是拷贝参数数组中的内容到新数组。 AtomicIntegerArray中的原子更新方法大多带有数组索引参数,比如:

public final boolean compareAndSet(int i, int expect, int update) public final int getAndIncrement(int i) public final int getAndAdd(int i, int delta)

第一个参数i就是索引。看个简单的例子:

public class AtomicArrayDemo { public static void main(String[] args) { int[] arr = { 1, 2, 3, 4 }; AtomicIntegerArray atomicArr = new AtomicIntegerArray(arr); atomicArr.compareAndSet(1, 2, 100); System.out.println(atomicArr.get(1)); System.out.println(arr[1]); } }

输出为:

100 2

FieldUpdater FieldUpdater方便以原子方式更新对象中的字段,字段不需要声明为原子变量,FieldUpdater是基于反射机制实现的,我们会在后续章节介绍反射,这里简单介绍下其用法,看代码:

public class FieldUpdaterDemo { static class DemoObject { private volatile int num; private volatile Object ref; private static final AtomicIntegerFieldUpdater<DemoObject> numUpdater = AtomicIntegerFieldUpdater.newUpdater(DemoObject.class, "num"); private static final AtomicReferenceFieldUpdater<DemoObject, Object> refUpdater = AtomicReferenceFieldUpdater.newUpdater( DemoObject.class, Object.class, "ref"); public boolean compareAndSetNum(int expect, int update) { return numUpdater.compareAndSet(this, expect, update); } public int getNum() { return num; } public Object compareAndSetRef(Object expect, Object update) { return refUpdater.compareAndSet(this, expect, update); } public Object getRef() { return ref; } } public static void main(String[] args) { DemoObject obj = new DemoObject(); obj.compareAndSetNum(0, 100); obj.compareAndSetRef(null, new String("hello")); System.out.println(obj.getNum()); System.out.println(obj.getRef()); } }

类DemoObject中有两个成员num和ref,声明为volatile,但不是原子变量,不过DemoObject对外提供了原子更新方法compareAndSet,它是使用字段对应的FieldUpdater实现的,FieldUpdater是一个静态成员,通过newUpdater工厂方法得到,newUpdater需要的参数有类型、字段名、对于引用类型,还需要引用的具体类型。 ABA问题 使用CAS方式更新有一个ABA问题,该问题是指,一个线程开始看到的值是A,随后使用CAS进行更新,它的实际期望是没有其他线程修改过才更新,但普通的CAS做不到,因为可能在这个过程中,已经有其他线程修改过了,比如先改为了B,然后又改回为了A。

ABA是不是一个问题与程序的逻辑有关,如果是一个问题,一个解决方法是使用AtomicStampedReference,在修改值的同时附加一个时间戳,只有值和时间戳都相同才进行修改,其CAS方法声明为:

public boolean compareAndSet( V expectedReference, V newReference, int expectedStamp, int newStamp)

比如:

Pair pair = new Pair(100, 200); int stamp = 1; AtomicStampedReference<Pair> pairRef = new AtomicStampedReference<Pair>(pair, stamp); int newStamp = 2; pairRef.compareAndSet(pair, new Pair(200, 200), stamp, newStamp);

AtomicStampedReference在compareAndSet中要同时修改两个值,一个是引用,另一个是时间戳,它怎么实现原子性呢?实际上,内部AtomicStampedReference会将两个值组合为一个对象,修改的是一个值,我们看代码:

public boolean compareAndSet(V expectedReference, V newReference, int expectedStamp, int newStamp) { Pair<V> current = pair; return expectedReference == current.reference && expectedStamp == current.stamp && ((newReference == current.reference && newStamp == current.stamp) || casPair(current, Pair.of(newReference, newStamp))); }

这个Pair是AtomicStampedReference的一个内部类,成员包括引用和时间戳,具体定义为:

private static class Pair<T> { final T reference; final int stamp; private Pair(T reference, int stamp) { this.reference = reference; this.stamp = stamp; } static <T> Pair<T> of(T reference, int stamp) { return new Pair<T>(reference, stamp); } }

AtomicStampedReference将对引用值和时间戳的组合比较和修改转换为了对这个内部类Pair单个值的比较和修改。 AtomicMarkableReference是另一个AtomicReference的增强类,与AtomicStampedReference类似,它也是给引用关联了一个字段,只是这次是一个boolean类型的标志位,只有引用值和标志位都相同的情况下才进行修改。 小结 本节介绍了各种原子变量的用法以及背后的原理CAS,对于并发环境中的计数、产生序列号等需求,考虑使用原子变量而非锁,CAS是Java并发包的基础,基于它可以实现高效的、乐观、非阻塞式数据结构和算法,它也是并发包中锁、同步工具和各种容器的基础。 下一节,我们讨论并发包中的显式锁。

(与其他章节一样,本节所有代码位于 https://github.com/swiftma/program-logic)

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-02-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 老马说编程 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
容器服务
腾讯云容器服务(Tencent Kubernetes Engine, TKE)基于原生 kubernetes 提供以容器为核心的、高度可扩展的高性能容器管理服务,覆盖 Serverless、边缘计算、分布式云等多种业务部署场景,业内首创单个集群兼容多种计算节点的容器资源管理模式。同时产品作为云原生 Finops 领先布道者,主导开源项目Crane,全面助力客户实现资源优化、成本控制。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档