前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >用Python对用户评论典型意见进行数据挖掘

用Python对用户评论典型意见进行数据挖掘

作者头像
Python中文社区
发布2018-02-01 11:55:49
4.2K0
发布2018-02-01 11:55:49
举报
文章被收录于专栏:Python中文社区

用户体验的工作可以说是用户需求和用户认知的分析。而消费者的声音是其中很重要的一环,它包含了用户对产品的评论,不管是好的坏的,都将对我们产品的改进和迭代有帮助。另外任何事情都要考虑金钱成本和人力成本,因此我希望能通过机器学习的算法来辅助分析,对用户的评论数据进行提炼和洞察。

一、数据获取和清洗

现在爬虫泛滥,网络公开数据的获取并不再是一个难题。简单点可以利用一些互联网的爬虫服务(如神箭手、八爪鱼等),复杂点也可以自己写爬虫。这里我们用爬虫来获取京东的评论数据。相对于亚马逊而言,京东比较坑。第一个坑是京东的反爬虫还不错,通过正常产品网址进去的那个评论列表是几乎爬不出数据来的,所有大部分网络爬虫服务都止步于此。第二个坑是一款产品的评论数只要超过一万条,那么京东就只会显示前一千条,没有公开的数据,那你爬虫技术再厉害也没办法,除非开着爬虫定时增量更新数据。

自己写爬虫的好处就是可以避免掉进第一个坑,但是第二个坑没办法。这里我爬取了 小米MIX 和 小米MIX2 的评论数据(最新的几款手机我都爬取了,需要的请戳后台),其中 小米MIX 共1578条,小米MIX2 共3292条。

本文通过分析这些数据预期完成如下几个目标

1、数据清洗后的好评率

2、好/中/差评的概览

3、典型意见分析

首先来看看MIX2的大致情况:

一共有3497条评论,其中有些评论内容还是完全相同的。用户大概在购买9天后后评论(可能与到货日期有关),平均打分为4.87分,评论里面有些完全相同的,小米MIX2只有一种颜色等等。

接下来我们先做第一件事情

京东采用的是5分制,其中4-5分为好评,2-4分为中评,1分为差评。MIX2的好评率为96.63%,与京东官网的一致。

粗略的浏览以下评论,我们发现有这么几种无效评论。

第一种全是标点符号或者就一两个字:

这种情况可以利用正则表达式来去除,第二种比较麻烦,如:

这种评论中它纯属凑字数和灌水,不含任何产品的特征。一种想法是看看评论中涉及的名词是否是手机领域中的词语,但是实际情况会非常复杂,比如

“用的很不错”、“太差了”...

它并没有主语,并不知道它评价的是啥。这里我们反过来,假设每一类无效评论都有类似的关键词,一个评论中的词语只要有一些垃圾评论关键词,我们就把它判定为无效评论。当然并也不需要给定所有的无效评论词,利用tfidf可以通过一个词语顺藤摸瓜找到其他类似的词语。(还可以利用文本相似性算法寻找)

另外还有一种情况,虽然不属于无效评论,但是影响好评占比。

这种情况在追评中出现的较多,还有就是京东默认的好评。虽然内容是差评,但是标记的分值是5分。理论上也可以通过算法找出大部分。在NLP领域中,有一个课题叫做情感分析(sentiment analysis), 它可以判断一句话的情感方向是正面的还是负面的(以概率大小给出,数值在0-1之间)。如果一段评论的情感方向与对应的评分差异过大,则我们有理由相信它的评分是有误的。当然这里有一个条件,那就是这个情感分析算法是非常准确的。

有大神专门用电商评论训练了一个开源的情感分析包snownlp, 我们来看看这个包效果怎样。

嗯嗯,准确率为92.63%,看上去很高,但。。。因为我把所有评论都判定为好评,那正确率也有96.54%。再看上图中的ROC曲线,嗯,惨不忍睹。曲线跟x轴之间的面积(记作AUC)越大,说明模型的判别能力越好。一般情况曲线会在对角线之上(对角线相当于随机预测的结果),可以此时AUC=0.157,比随机结果差多啦。

更好的情感分析估计需要利用大量手机领域的语料重新训练才行,本文就暂不讨论这个啦。

二、好/中/差评的语义理解

语义理解是一个非常难的课题,本文不追求绝对精准,仅希望能对产品的评论有一个快速的理解。本文将从三个方面来阐述同类型评论语料的语义:

1、词云。它会统计一段文本中各个词语出现的次数(频数),频数越大,在词云中对应的字体也越大。通过观察词云,可以知道一段文本主要在讲哪些东西

2、TextRank。 TextRank 算法是一种用于文本的基于图的排序算法,可以给出一段文本的关键词。其基本思想来源于谷歌的PageRank算法, 通过把文本分割成若干组成单元(单词、句子)并建立图模型, 利用投票机制对文本中的重要成分进行排序, 仅利用单篇文档本身的信息即可实现关键词提取、文摘。和 LDA、HMM 等模型不同, TextRank不需要事先对多篇文档进行学习训练, 因其简洁有效而得到广泛应用。

3、主题分解。 假设每一段文本都是有主题的,比如新闻里的体育类、时事类、八卦类等。通过对一系列的语料库进行主题分解(本文采用的是LDA),可以了解语料库涉及了哪些主题。(本文用的LDA实际效果不怎么好,暂且仅供娱乐。更好的方法后续或许会更新)

分析词云、关键词和主题容易发现

1、好评集中在:屏幕、惊讶、手感、全面屏、边框,大致就是讲小米手机不错;手感很好;全面屏很惊艳之类的;

2、中评集中在:屏幕、还好、失望、边框等

3、差评集中在:客服、失灵、售后、失望、模式、微信等,大致就是手机失灵;微信电话时的屏幕?因为版本等出现了一些售后客服问题?

只能说还凑合,模模糊糊、断断续续能理解一些。因为它只给出了词语,并没有配套的情感。

三、典型意见抽取和挖掘

电商评论不同于一般的网络文本,它主要的特点在于语料都是在针对产品的某些特征作出评价。这一节我们希望能通过算法找到这些特征。

细想下,语料主要在对特征做出评价,而特征一般是名词,评价一般是形容词。相对来讲产品的形容词不会很多,如“不错”、“流畅”、“很好”之类的,所以可以通过关联分析来发现初始的特征-形容词对,如("手机"-"不错")、("手机"-"流畅")等。

通过关联分析找打的特征-形容词对需要筛选,主要表现在两点。

1、里面不只名词-形容词对,两个名词,形容词-动词等都有可能;

2、没有考虑两个词语在文本之间的距离。比如名词是第一句话中的,形容词则是最后一句话中的;

筛选好后其实还不够,关联分析只会挖掘支持度大于一定数值的特征,我们称这种特征为 "常见特征"。那不常见特征怎么办?怎么才能挖出来?注意到上面已经挖掘出很多形容词啦,这些就是产品的最常用评价词语啦,我们可以通过它们反向挖掘出 "不常见特征"。

可以看到与手机有关的大部分特征都找出来啦,另外有一些是关于京东的,如"速度"、"京东"、"快递"。还一些不是特征的,比如:"有点","想象"

在语料中搜索与"外观"有关的语句,先看看大家在讲"外观"时,都在聊些啥?

看来小米MIX2的外观还是很不错的,有很多人都是冲着外观买的。接下来我们来量化各个特征的好评占比和差评占比。

本来这里是想利用snownlp情感分析包来完成的,因为它能给出评价是否是正面的具体概率大小。考虑到情感分析目前的准确率,这里我们还是用原始的评分来量化。以刚刚的关键词 "外观|质感" 为例,我们有

利用这种方法,扩大到上述所有的特征可以得到:

可以看到提及最多的特征依次为:感觉、屏幕、速度、手感、系统、边框、摄像头、全面屏、拍照、体验、256g、外观、质量、性价比

其中比较好的依次为:性价比、质量、手感、速度、外观、感觉

其中稍差些的依次为:256g、屏幕、边框、拍照、摄像头、系统、体验、全面屏

最后的最后我们来看下这些特征对应的语料。

总结一下差评主要表现在:

No1. 256g版本发货问题

No2. 窄边框问题

No3. 拍照问题,MIX2的拍照效果有待提升

No4. 前置摄像头在下面不方便

No5. 系统,MIUI广告多

四、报告输出

这里安利一个自己造的轮子:reportgen ,结合DataFrame 格式可以自动化生成PPTX报告。目前Github关注量已经有20+啦。

在reportgen中,每一页幻灯片被简化成四部分:标题、副标题、主体(数据图、表格、文本框或图片)、脚注。只要给定每一页的这些数据,reportgen就能帮您自动生成pptx,一般四行代码就完成啦。如:

当然本文的pptx要复杂一些,相应的代码和生成的报告如下:

本文作者

JSong

Python中文社区专栏作者,华东师范大学硕士,擅长数据分析与挖掘。

本文参与 腾讯云自媒体同步曝光计划,分享自微信公众号。
原始发表:2018-01-04,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 Python中文社区 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体同步曝光计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档