算法(一)时间复杂度

前言

算法很重要,但是一般情况下做移动开发并不经常用到,所以很多同学早就将算法打了个大礼包送还给了老师了,况且很多同学并没有学习过算法。这个系列就让对算法头疼的同学能快速的掌握基本的算法。过年放假阶段玩了会游戏NBA2K17的生涯模式,没有比赛的日子也都是训练,而且这些训练都是自发的,没有人逼你,从早上练到晚上,属性也不涨,但是如果日积月累,不训练和训练的人的属性值就会产生较大差距。这个突然让我意识到了现实世界,要想成为一个球星(技术大牛)那就需要日积月累的刻意训练,索性放下游戏,接着写文章吧。

1.算法的效率

虽然计算机能快速的完成运算处理,但实际上,它也需要根据输入数据的大小和算法效率来消耗一定的处理器资源。要想编写出能高效运行的程序,我们就需要考虑到算法的效率。 算法的效率主要由以下两个复杂度来评估: 时间复杂度:评估执行程序所需的时间。可以估算出程序对处理器的使用程度。 空间复杂度:评估执行程序所需的存储空间。可以估算出程序对计算机内存的使用程度。

设计算法时,一般是要先考虑系统环境,然后权衡时间复杂度和空间复杂度,选取一个平衡点。不过,时间复杂度要比空间复杂度更容易产生问题,因此算法研究的主要也是时间复杂度,不特别说明的情况下,复杂度就是指时间复杂度。

2.时间复杂度

时间频度 一个算法执行所耗费的时间,从理论上是不能算出来的,必须上机运行测试才能知道。但我们不可能也没有必要对每个算法都上机测试,只需知道哪个算法花费的时间多,哪个算法花费的时间少就可以了。并且一个算法花费的时间与算法中语句的执行次数成正比例,哪个算法中语句执行次数多,它花费时间就多。一个算法中的语句执行次数称为语句频度或时间频度。记为T(n)。

时间复杂度 前面提到的时间频度T(n)中,n称为问题的规模,当n不断变化时,时间频度T(n)也会不断变化。但有时我们想知道它变化时呈现什么规律,为此我们引入时间复杂度的概念。一般情况下,算法中基本操作重复执行的次数是问题规模n的某个函数,用T(n)表示,若有某个辅助函数f(n),使得当n趋近于无穷大时,T(n)/f(n)的极限值为不等于零的常数,则称f(n)是T(n)的同数量级函数,记作T(n)=O(f(n)),它称为算法的渐进时间复杂度,简称时间复杂度。

3.大O表示法

像前面用O( )来体现算法时间复杂度的记法,我们称之为大O表示法。 算法复杂度可以从最理想情况、平均情况和最坏情况三个角度来评估,由于平均情况大多和最坏情况持平,而且评估最坏情况也可以避免后顾之忧,因此一般情况下,我们设计算法时都要直接估算最坏情况的复杂度。 大O表示法O(f(n)中的f(n)的值可以为1、n、logn、n²等,因此我们可以将O(1)、O(n)、O(logn)、O(n²)分别可以称为常数阶、线性阶、对数阶和平方阶,那么如何推导出f(n)的值呢?我们接着来看推导大O阶的方法。

推导大O阶 推导大O阶,我们可以按照如下的规则来进行推导,得到的结果就是大O表示法: 1.用常数1来取代运行时间中所有加法常数。 2.修改后的运行次数函数中,只保留最高阶项 3.如果最高阶项存在且不是1,则去除与这个项相乘的常数。

常数阶 先举了例子,如下所示。

上面算法的运行的次数的函数为f(n)=3,根据推导大O阶的规则1,我们需要将常数3改为1,则这个算法的时间复杂度为O(1)。如果sum = (1+n)*n/2这条语句再执行10遍,因为这与问题大小n的值并没有关系,所以这个算法的时间复杂度仍旧是O(1),我们可以称之为常数阶。

线性阶 线性阶主要要分析循环结构的运行情况,如下所示。

上面算法循环体中的代码执行了n次,因此时间复杂度为O(n)。

对数阶 接着看如下代码:

可以看出上面的代码,随着number每次乘以2后,都会越来越接近n,当number不小于n时就会退出循环。假设循环的次数为X,则由2^x=n得出x=log₂n,因此得出这个算法的时间复杂度为O(logn)。

平方阶 下面的代码是循环嵌套:

内层循环的时间复杂度在讲到线性阶时就已经得知是O(n),现在经过外层循环n次,那么这段算法的时间复杂度则为O(n²)。 接下来我们来算一下下面算法的时间复杂度:

需要注意的是内循环中int j=i,而不是int j=0。当i=0时,内循环执行了n次;i=1时内循环执行了n-1次,当i=n-1时执行了1次,我们可以推算出总的执行次数为:

n+(n-1)+(n-2)+(n-3)+……+1 =(n+1)+[(n-1)+2]+[(n-2)+3]+[(n-3)+4]+…… =(n+1)+(n+1)+(n+1)+(n+1)+…… =(n+1)n/2 =n(n+1)/2 =n²/2+n/2

根据此前讲过的推导大O阶的规则的第二条:只保留最高阶,因此保留n²/2。根据第三条去掉和这个项的常数,则去掉1/2,最终这段代码的时间复杂度为O(n²)。

其他常见复杂度

除了常数阶、线性阶、平方阶、对数阶,还有如下时间复杂度: f(n)=nlogn时,时间复杂度为O(nlogn),可以称为nlogn阶。 f(n)=n³时,时间复杂度为O(n³),可以称为立方阶。 f(n)=2ⁿ时,时间复杂度为O(2ⁿ),可以称为指数阶。 f(n)=n!时,时间复杂度为O(n!),可以称为阶乘阶。 f(n)=(√n时,时间复杂度为O(√n),可以称为平方根阶。

4.复杂度的比较

下面将算法中常见的f(n)值根据几种典型的数量级来列成一张表,根据这种表,我们来看看各种算法复杂度的差异。

n

logn

√n

nlogn

2ⁿ

n!

5

2

2

10

25

32

120

10

3

3

30

100

1024

3628800

50

5

7

250

2500

约10^15

约3.0*10^64

100

6

10

600

10000

约10^30

约9.3*10^157

1000

9

31

9000

1000 000

约10^300

约4.0*10^2567

从上表可以看出,O(n)、O(logn)、O(√n )、O(nlogn )随着n的增加,复杂度提升不大,因此这些复杂度属于效率高的算法,反观O(2ⁿ)和O(n!)当n增加到50时,复杂度就突破十位数了,这种效率极差的复杂度最好不要出现在程序中,因此在动手编程时要评估所写算法的最坏情况的复杂度。

下面给出一个更加直观的图:

其中x轴代表n值,y轴代表T(n)值(时间复杂度)。T(n)值随着n的值的变化而变化,其中可以看出O(n!)和O(2ⁿ)随着n值的增大,它们的T(n)值上升幅度非常大,而O(logn)、O(n)、O(nlogn)随着n值的增大,T(n)值上升幅度则很小。

常用的时间复杂度按照耗费的时间从小到大依次是:

O(1)<O(logn)<O(n)<O(nlogn)<O(n²)<O(n³)<O(2ⁿ)<O(n!)

参考资料 《大话数据结构》 《挑战程序设计竞赛2》 《算法》

原文发布于微信公众号 - 刘望舒(liuwangshuAndroid)

原文发表时间:2017-02-09

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏互联网大杂烩

Python 异常值分析

异常值分析是检验数据是否有录入错误以及含有不合常理的数据。忽视异常值的存在是十分危险的,不加剔除地把异常值包括进数据的计算分析过程中,对结果会产生不良影响;重视...

1842
来自专栏Python数据科学

机器学习“特征编码”的经验分享:鱼还是熊掌?

我们拿到的数据通常比较脏乱,可能会带有各种非数字特殊符号,比如中文。下面这个表中显示了我们最原始的数据集。而实际上机器学习模型需要的数据是数字型的,因为只有数字...

3951
来自专栏趣学算法

数据结构 第2讲 算法复杂性

该内容来源于本人著作《趣学算法》在线章节:http://www.epubit.com.cn/book/details/4825

1242
来自专栏zhisheng

学习算法之路

一个搞ACM的需要掌握的算法的sheet。 第一阶段:练经典常用算法,下面的每个算法给我打上十到二十遍,同时自己精简代码,因为太常用,所以要练到写时不用想,10...

6005
来自专栏ACM算法日常

丘比特的箭(点是否在面内)- HDU 1756

对于点A是否在多边形P内的判定, 一般有两种方法:射线法和转角法。 这里介绍一下射线法。

692
来自专栏数据派THU

手把手教你深度学习强大算法进行序列学习(附Python代码)

本文共3200字,建议阅读10分钟。 本文将教你使用做紧致预测树的算法来进行序列学习。

1924
来自专栏瓜大三哥

基于FPGA的非线性滤波器(二)

基于FPGA的非线性滤波器(二) 之并行全比较排序 在进行FPGA映射之前,必须首先确定排序算法。由于在FPGA的图像处理领域,中值滤波的处理窗口不会太大,因此...

2329
来自专栏琦小虾的Binary

Opencv中数据结构Mat的相关属性

Opencv中数据结构Mat的相关属性 前言: The class Mat represents an n-dimensional dense numeric...

3197
来自专栏张善友的专栏

EMA算法的C#实现

EMA表示的是指数平滑移动平均,其函数的定义为Y=EMA(X,N) 则Y=[2*X+(N-1)*Y']/(N+1), 其中Y'表示上一周期Y值。 求X的N日指数...

4335
来自专栏小樱的经验随笔

【机器学习笔记之一】深入浅出学习K-Means算法

摘要:在数据挖掘中,K-Means算法是一种 cluster analysis 的算法,其主要是来计算数据聚集的算法,主要通过不断地取离种子点最近均值的算法。 ...

3019

扫码关注云+社区

领取腾讯云代金券