Android图像处理 - 高斯模糊的原理及实现

前言

高斯模糊是图像处理中几乎每个程序员都或多或少听过的名词,但是对其原理大家可能并不了解,只知道通过高斯模糊能实现图像毛玻璃效果。

本文首先介绍图像处理中最基本的概念:卷积;随后介绍高斯模糊的核心内容:高斯滤波器;接着,我们从头实现了一个Java版本的高斯模糊算法,以及实现RenderScript版本。由于我们自己实现的Java版本的高斯模糊算法的效率太低,因此最后介绍比较有名的高斯模糊的开源项目:Blurry以及BlurKit-Android。

BlurDemo是本文的配套Demo:

  • Demo1:Java版本的高斯模糊的简单实现。
  • Demo2:RenderScript的高斯模糊实现。
  • Demo3:BlurKit-Android的基本使用。
  • Demo4:Blurry的基本使用。

卷积

本文只讨论图像,而图像可以表示为二维矩阵,其中每个元素为ARGB像素值,因此这里讨论二维矩阵的卷积操作。卷积(Convolution)是图像处理中最基本的操作,就是一个二维矩阵A(M*N)和一个二维矩阵B(m*n)做若干操作,生成一个新的二维矩阵C(M*N),其中m和n远小于M和N,B称为卷积核(kernel),又称滤波器矩阵或模板。

这里举个卷积的例子,如图:

上图中,最左边的是源矩阵(8*8),中间是卷积核(3*3,半径为1),最右边是通过对前面两个矩阵做卷积生成的结果矩阵。图中,如果我们要求出结果矩阵中第二行第二列的元素的值,则把卷积核的中心元素(值为0)和源矩阵的第二行第二列(值为6)对齐,然后求加权和,即图中的公式,最后得到-3。

我们再举一个例子:

上图也展示了如何做卷积的过程,比如要求出结果矩阵中第一行第一列的值,则把卷积核的中心对准源矩阵的第一行第一列,发现部分区域超出源矩阵的范围了(图中红色部分),解决方法有很多,这里的方案是:用边界值填充。接着做加权和,结果为-5。接着用同样的方法依次计算结果矩阵的每个元素即可。

通常来说卷积核需要满足:

  • 宽和高都为奇数,这样才会有半径和中心的概念。
  • 元素总和为1。

滤波器

均值滤波器

均值滤波器(Mean Filter)是最简单的一种滤波器,它是最粗糙的一种模糊图像的方法,高斯滤波是均值滤波的高级版本。实际上不同的滤波器就是通过改变卷积核(滤波器),从而改变最后的结果矩阵,中间步骤都一样,都是求加权和。均值滤波器的卷积核通常是m*m的矩阵,其中每个元素为1/(m^2),可以看出卷积核的元素总和为1。比如3*3的均值滤波器,卷积核的每个元素就是1/9。

高斯滤波器

高斯滤波器是均值滤波器的高级版本,唯一的区别在于,均值滤波器的卷积核的每个元素都相同,而高斯滤波器的卷积核的元素服从高斯分布。

高斯滤波器是基于二维的高斯分布函数,因此首先介绍二维高斯分布函数。二维高斯分布函数和图如下:

其中x和y表示卷积核中某个元素横坐标和纵坐标距离中心点的距离。sigma控制曲线的平缓程度,值越大,越平缓,最高点越低。我们可以轻易看出当x=0且y=0时值最大,即卷积核的中心点权重最大。

比如卷积核中一个元素距离中心点,横向距离2,纵向距离1,那么x=2,y=1,就能求出该元素的值。当然为了保证卷积核元素总和为1,最后每个元素都需要除以卷积核中所有元素之和。

怎么确定卷积核的大小呢?确定sigma之后,虽然不管距离中心点多远,该元素的高斯分布函数值总为非负数,但是根据经验,卷积核的半径定为3*sigma,因此宽高为6*sigma+1。

如果高斯滤波器的卷积核是二维的(m*n),则算法复杂度为O(m*n*M*N),复杂度较高,因此接下来我们对算法复杂度进行优化。

一维的高斯分布函数和图如下:

实际上,二维高斯分布函数可以分解为两个一维高斯分布函数相乘,如下:

因此原本的源矩阵和二维卷积核做卷积等价于源矩阵先与1*m的一维卷积核做卷积,再与m*1的一维卷积核做卷积。一维卷积核的半径仍定为3*sigma。此时算法复杂度变为O(2*m*M*N)。

高斯模糊的实现

Java版本

这里实现了简单版本的高斯模糊,通过使用横向和纵向的一维高斯滤波器分别对源矩阵卷积,通过设置sigma的大小能控制图片的模糊程度,值越大越模糊。但是算法速度仍比较慢,建议直接使用RenderScript版本或直接使用成熟的开源项目。

由于代码过长,不能截图,因此直接给出Gist地址:https://gist.github.com/xiazdong/d57bf5441f56db197163a5de69dfa65f

效果如下:

RenderScript版本

RenderScript是Android提出的一个计算密集型任务的高性能框架,能并行的处理任务,他可以充分利用多核CPU和GPU,你不需要管怎么调度你的任务,只需要管任务具体做什么。这里不深入介绍RenderScript,因为RenderScript已经提供了一个实现高斯模糊的类:ScriptIntrinsicBlur。

实现起来非常简单:

开源项目

关于Android图像模糊的开源项目有很多,比如Blurry是专门针对Bitmap或View做模糊,可以设置模糊的基底色,而且还能对模糊操作异步化;BlurKit-Android也能对Bitmap做高斯模糊(内部通过RenderScript实现),但最吸引人的是实现了毛玻璃的遮罩,效果如下:

BlurKit-Android支持的最低版本是Android 4.1(API 16),因此如果应用需要支持的最低版本是4.0,则不能使用该库,Blurry支持的最低版本是3.0。

BlurKit-Android

配置过程如下:

  • 在build.gradle中设置:compile 'com.wonderkiln:blurkit:1.0.0',并在defaultConfig中设置renderscriptTargetApi 24renderscriptSupportModeEnabled true
  • 在Application的onCreate()最开始处加入BlurKit.init(this);

配置完成后,通过调用BlurKit.getInstance().blur(Bitmap src, int radius);实现高斯模糊,并会把高斯模糊的结果图写入src,其中0<radius<=25。

该库还提供了fastBlur()实现速度更快的高斯模糊,和blur()的区别在于,fastBlur()在高斯模糊之前对图片采样,使得图片大小缩小好几倍,从而加快高斯模糊的速度。这种加快速度的方法是合理的,因为高斯模糊并不需要原图像很精确的信息。

BlurKit-Android最吸引人的是提供高斯模糊的遮罩(BlurLayout),随着遮罩下面的内容的变化,高斯模糊效果也会随之改变。使用如下:

该Layout能够实现实时的对该Layout下面的内容做高斯模糊。

Blurry

配置方法:在build.gradle中添加compile 'jp.wasabeef:blurry:2.1.1'

使用方法如下:

总的来说,这两个库都使用起来非常方便。


作者简介:damonxia(夏正冬),天天P图Android工程师

原文发布于微信公众号 - 天天P图攻城狮(ttpic_dev)

原文发表时间:2017-09-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

1 条评论
登录 后参与评论

相关文章

来自专栏腾讯Bugly的专栏

手机端运行卷积神经网络实现文档检测功能(二) -- 从 VGG 到 MobileNetV2 知识梳理

5414
来自专栏AI研习社

Kaggle 机器学习之模型融合(stacking)心得

此文道出了本人学习 Stacking 入门级应用的心路历程。 在学习过程中感谢 @贝尔塔的模型融合方法(http://t.cn/R62UGLF),以及如何在 K...

3286
来自专栏计算机视觉与深度学习基础

计算机视觉与图像处理学习笔记(一)

写在前面:因学习需要,本人根据章毓晋的《计算机视觉教程》和冈萨雷斯的《数字图像处理》两本书进行学习,中间会穿插相关实践,会有对opencv的学习,以此笔记记录学...

2106
来自专栏机器之心

专栏 | 手机端运行卷积神经网络实践:基于TensorFlow和OpenCV实现文档检测功能

机器之心投稿 作者:腾讯 iOS 客户端高级工程师冯牮 本文作者通过一个真实的产品案例,展示了在手机客户端上运行一个神经网络的关键技术点。 前言 本文不是神经网...

3595
来自专栏目标检测和深度学习

资源 | 用Python和NumPy学习《深度学习》中的线性代数基础

652
来自专栏机器之心

资源 | 谷歌官方开源tf-seq2seq:一种通用编码器-解码器框架

选自Google 机器之心编译 参与:吴攀 谷歌又开源了!tf-seq2seq 是一个用于 TensorFlow 的通用编码器-解码器框架(encoder-de...

2927
来自专栏AI研习社

如何用 TensorFlow 实现基于 LSTM 的文本分类(附源码)

引言 学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow...

4747
来自专栏和蔼的张星的图像处理专栏

2.霍夫变换

霍夫变换是检测直线或者圆的一种比较简单的方法。霍夫变换检测直线是比较简单的,做完以后是一个二维平面上的许多曲线,通过统计平面上交点的个数,就可以得出哪些点事处于...

983
来自专栏腾讯Bugly的专栏

基于 TensorFlow 在手机端实现文档检测

手机端运行卷积神经网络的一次实践 — 基于 TensorFlow 和 OpenCV 实现文档检测功能 1. 前言 本文不是神经网络或机器学习的入门教学,而是通过...

4644
来自专栏Python数据科学

数据分析实战—北京二手房房价分析(建模篇)

本篇将继续上一篇数据分析之后进行数据挖掘建模预测,这两部分构成了一个简单的完整项目。结合两篇文章通过数据分析和挖掘的方法可以达到二手房屋价格预测的效果。

862

扫码关注云+社区