最小生成树-Prim算法和Kruskal算法

Prim算法

1.概览

普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树。意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (graph theory)),且其所有边的权值之和亦为最小。该算法于1930年由捷克数学家沃伊捷赫·亚尔尼克(英语:Vojtěch Jarník)发现;并在1957年由美国计算机科学家罗伯特·普里姆(英语:Robert C. Prim)独立发现;1959年,艾兹格·迪科斯彻再次发现了该算法。因此,在某些场合,普里姆算法又被称为DJP算法、亚尔尼克算法或普里姆-亚尔尼克算法。

2.算法简单描述

1).输入:一个加权连通图,其中顶点集合为V,边集合为E;

2).初始化:Vnew = {x},其中x为集合V中的任一节点(起始点),Enew = {},为空;

3).重复下列操作,直到Vnew = V:

a.在集合E中选取权值最小的边<u, v>,其中u为集合Vnew中的元素,而v不在Vnew集合当中,并且v∈V(如果存在有多条满足前述条件即具有相同权值的边,则可任意选取其中之一);

b.将v加入集合Vnew中,将<u, v>边加入集合Enew中;

4).输出:使用集合Vnew和Enew来描述所得到的最小生成树。

下面对算法的图例描述

3.简单证明prim算法

反证法:假设prim生成的不是最小生成树

1).设prim生成的树为G0

2).假设存在Gmin使得cost(Gmin)<cost(G0)   则在Gmin中存在<u,v>不属于G0

3).将<u,v>加入G0中可得一个环,且<u,v>不是该环的最长边(这是因为<u,v>∈Gmin)

4).这与prim每次生成最短边矛盾

5).故假设不成立,命题得证.

 4.算法代码实现(未检验)

#define MAX  100000
#define VNUM  10+1                                             //这里没有ID为0的点,so id号范围1~10

int edge[VNUM][VNUM]={/*输入的邻接矩阵*/};
int lowcost[VNUM]={0};                                         //记录Vnew中每个点到V中邻接点的最短边
int addvnew[VNUM];                                             //标记某点是否加入Vnew
int adjecent[VNUM]={0};                                        //记录V中与Vnew最邻近的点


void prim(int start)
{
     int sumweight=0;
     int i,j,k=0;

     for(i=1;i<VNUM;i++)                                      //顶点是从1开始
     {
        lowcost[i]=edge[start][i];
        addvnew[i]=-1;                                         //将所有点至于Vnew之外,V之内,这里只要对应的为-1,就表示在Vnew之外
     }

     addvnew[start]=0;                                        //将起始点start加入Vnew
     adjecent[start]=start;
                                                 
     for(i=1;i<VNUM-1;i++)                                        
     {
        int min=MAX;
        int v=-1;
        for(j=1;j<VNUM;j++)                                      
        {
            if(addvnew[j]!=-1&&lowcost[j]<min)                 //在Vnew之外寻找最短路径
            {
                min=lowcost[j];
                v=j;
            }
        }
        if(v!=-1)
        {
            printf("%d %d %d\n",adjecent[v],v,lowcost[v]);
            addvnew[v]=0;                                      //将v加Vnew中

            sumweight+=lowcost[v];                             //计算路径长度之和
            for(j=1;j<VNUM;j++)
            {
                if(addvnew[j]==-1&&edge[v][j]<lowcost[j])      
                {
                    lowcost[j]=edge[v][j];                     //此时v点加入Vnew 需要更新lowcost
                    adjecent[j]=v;                             
                }
            }
        }
    }
    printf("the minmum weight is %d",sumweight);
}

5.时间复杂度

这里记顶点数v,边数e

邻接矩阵:O(v2)                 邻接表:O(elog2v)

Kruskal算法

1.概览

Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表。用来解决同样问题的还有Prim算法和Boruvka算法等。三种算法都是贪婪算法的应用。和Boruvka算法不同的地方是,Kruskal算法在图中存在相同权值的边时也有效。

2.算法简单描述

1).记Graph中有v个顶点,e个边

2).新建图Graphnew,Graphnew中拥有原图中相同的e个顶点,但没有边

3).将原图Graph中所有e个边按权值从小到大排序

4).循环:从权值最小的边开始遍历每条边 直至图Graph中所有的节点都在同一个连通分量中

                if 这条边连接的两个节点于图Graphnew中不在同一个连通分量中

                                         添加这条边到图Graphnew中

图例描述:

首先第一步,我们有一张图Graph,有若干点和边 

将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图

在剩下的变中寻找。我们找到了CE。这里边的权重也是5

依次类推我们找到了6,7,7,即DF,AB,BE。

下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。

最后就剩下EG和FG了。当然我们选择了EG。最后成功的图就是右:

3.简单证明Kruskal算法

对图的顶点数n做归纳,证明Kruskal算法对任意n阶图适用。

归纳基础:

n=1,显然能够找到最小生成树。

归纳过程:

假设Kruskal算法对n≤k阶图适用,那么,在k+1阶图G中,我们把最短边的两个端点a和b做一个合并操作,即把u与v合为一个点v',把原来接在u和v的边都接到v'上去,这样就能够得到一个k阶图G'(u,v的合并是k+1少一条边),G'最小生成树T'可以用Kruskal算法得到。

我们证明T'+{<u,v>}是G的最小生成树。

用反证法,如果T'+{<u,v>}不是最小生成树,最小生成树是T,即W(T)<W(T'+{<u,v>})。显然T应该包含<u,v>,否则,可以用<u,v>加入到T中,形成一个环,删除环上原有的任意一条边,形成一棵更小权值的生成树。而T-{<u,v>},是G'的生成树。所以W(T-{<u,v>})<=W(T'),也就是W(T)<=W(T')+W(<u,v>)=W(T'+{<u,v>}),产生了矛盾。于是假设不成立,T'+{<u,v>}是G的最小生成树,Kruskal算法对k+1阶图也适用。

由数学归纳法,Kruskal算法得证。

4.代码算法实现

typedef struct          
{        
    char vertex[VertexNum];                                //顶点表         
    int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表         
    int n,e;                                               //图中当前的顶点数和边数         
}MGraph; 
 
typedef struct node  
{  
    int u;                                                 //边的起始顶点   
    int v;                                                 //边的终止顶点   
    int w;                                                 //边的权值   
}Edge; 

void kruskal(MGraph G)  
{  
    int i,j,u1,v1,sn1,sn2,k;  
    int vset[VertexNum];                                    //辅助数组,判定两个顶点是否连通   
    int E[EdgeNum];                                         //存放所有的边   
    k=0;                                                    //E数组的下标从0开始   
    for (i=0;i<G.n;i++)  
    {  
        for (j=0;j<G.n;j++)  
        {  
            if (G.edges[i][j]!=0 && G.edges[i][j]!=INF)  
            {  
                E[k].u=i;  
                E[k].v=j;  
                E[k].w=G.edges[i][j];  
                k++;  
            }  
        }  
    }     
    heapsort(E,k,sizeof(E[0]));                            //堆排序,按权值从小到大排列       
    for (i=0;i<G.n;i++)                                    //初始化辅助数组   
    {  
        vset[i]=i;  
    }  
    k=1;                                                   //生成的边数,最后要刚好为总边数   
    j=0;                                                   //E中的下标   
    while (k<G.n)  
    {   
        sn1=vset[E[j].u];  
        sn2=vset[E[j].v];                                  //得到两顶点属于的集合编号   
        if (sn1!=sn2)                                      //不在同一集合编号内的话,把边加入最小生成树   
        {
            printf("%d ---> %d, %d",E[j].u,E[j].v,E[j].w);       
            k++;  
            for (i=0;i<G.n;i++)  
            {  
                if (vset[i]==sn2)  
                {  
                    vset[i]=sn1;  
                }  
            }             
        }  
        j++;  
    }  
}  

时间复杂度:elog2e  e为图中的边数

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏崔庆才的专栏

自然语言处理中句子相似度计算的几种方法

在做自然语言处理的过程中,我们经常会遇到需要找出相似语句的场景,或者找出句子的近似表达,这时候我们就需要把类似的句子归到一起,这里面就涉及到句子相似度计算的问题...

5.5K6
来自专栏人工智能

人工智能AI(5):线性代数之矩阵、线性空间

在前面的篇幅中,我们简单的介绍过矩阵的定义,按照原计划本来,今天准备写特征分解以及奇异值分解,但是发现这其中涉及到比较多的矩阵相关的知识,所以在讨论这些问题之前...

2755
来自专栏崔庆才的专栏

自然语言处理中句子相似度计算的几种方法

在做自然语言处理的过程中,我们经常会遇到需要找出相似语句的场景,或者找出句子的近似表达,这时候我们就需要把类似的句子归到一起,这里面就涉及到句子相似度计算的问题...

3683
来自专栏云霄雨霁

加权有向图----无环情况下的最短路径算法

1840
来自专栏人工智能LeadAI

决策树会有哪些特性?

决策树(Decision Tree)是机器学习中最常见的算法, 因为决策树的结果简单,容易理解, 因此应用超级广泛, 但是机器学习的专家们在设计决策树的时候会考...

3547
来自专栏文武兼修ing——机器学习与IC设计

算法复杂度分析与最大子串问题算法复杂度分析最大子序列问题

算法复杂度分析 算法复杂度基本定义 算法复杂度分析基于以下四条定义: 如果存在常数c与$n_{0}$使$N \geq n_{0} $时,有$T(N) \leq ...

2576
来自专栏专知

【论文推荐】最新6篇机器翻译相关论文—词性和语义标注任务、变分递归神经机器翻译、文学语料、神经后缀预测、重构模型

【导读】专知内容组整理了最近六篇机器翻译(Machine Translation)相关文章,为大家进行介绍,欢迎查看! 1. Evaluating Layers...

4806
来自专栏从流域到海域

普利姆(prim)算法和克鲁斯卡尔(kruskal)算法

连通网的最小生成树算法: 1.普里姆算法——”加点法”。 假设N=(V,{E})是连通网,TE为最小生成树的边集合。 (1)初始U={u0}(...

2637
来自专栏锦小年的博客

复杂网络(2)--图论的基本理论-最小生成树问题

连通且不含圈的无向图称为树(tree)。树中度为1的节点称为树叶,度大于1的节点称为分支点。 若图G=(V,E)的生成子图是一棵树,则称该树为图G的生成树(...

3586
来自专栏数据结构与算法

快速傅里叶变换(FFT)详解

本文只讨论FFT在信息学奥赛中的应用 文中内容均为个人理解,如有错误请指出,不胜感激 前言 先解释几个比较容易混淆的缩写吧 DFT:离散傅里叶变换—> 计算多...

4577

扫码关注云+社区

领取腾讯云代金券