R语言学习 - 箱线图(小提琴图、抖动图、区域散点图)

箱线图

箱线图是能同时反映数据统计量和整体分布,又很漂亮的展示图。在2014年的Nature Method上有2篇Correspondence论述了使用箱线图的好处和一个在线绘制箱线图的工具。就这样都可以发两篇Nature method,没天理,但也说明了箱线图的重要意义。

下面这张图展示了Bar plot、Box plot、Volin plot和Bean plot对数据分布的反应。从Bar plot上只能看到数据标准差或标准误不同;Box plot可以看到数据分布的集中性不同;Violin plot和Bean plot展示的是数据真正的分布,尤其是对Biomodal数据的展示。

Boxplot从下到上展示的是最小值,第一四分位数 (箱子的下边线)、中位数 (箱子中间的线)、第三四分位数 (箱子上边线)、最大值,具体解读参见刘永鑫的扩增子图表解读1箱线图:Alpha多样性,老板再也不操心的我文献阅读了

http://www.nature.com/nmeth/journal/v11/n2/full/nmeth.2811.html

一步步解析箱线图绘制

假设有这么一个基因表达矩阵,第一列为基因名字,后面几列为样品名字,想绘制下样品中基因表达的整体分布。

profile="Name;2cell_1;2cell_2;2cell_3;4cell_1;4cell_2;4cell_3;zygote_1;zygote_2;zygote_3
A;4;6;7;3.2;5.2;5.6;2;4;3
B;6;8;9;5.2;7.2;7.6;4;6;5
C;8;10;11;7.2;9.2;9.6;6;8;7
D;10;12;13;9.2;11.2;11.6;8;10;9
E;12;14;15;11.2;13.2;13.6;10;12;11
F;14;16;17;13.2;15.2;15.6;12;14;13
G;15;17;18;14.2;16.2;16.6;13;15;14
H;16;18;19;15.2;17.2;17.6;14;16;15
I;17;19;20;16.2;18.2;18.6;15;17;16
J;18;20;21;17.2;19.2;19.6;16;18;17
L;19;21;22;18.2;20.2;20.6;17;19;18
M;20;22;23;19.2;21.2;21.6;18;20;19
N;21;23;24;20.2;22.2;22.6;19;21;20
O;22;24;25;21.2;23.2;23.6;20;22;21"

读入数据并转换为ggplot2需要的长数据表格式 (经过前面几篇的练习,这应该都很熟了)

profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F)
# 在melt时保留位置信息
# melt格式是ggplot2画图最喜欢的格式
# 好好体会下这个格式,虽然多占用了不少空间,但是确实很方便

library(ggplot2)
library(reshape2)
data_m <- melt(profile_text)
head(data_m)
  variable value
1  2cell_1     4
2  2cell_1     6
3  2cell_1     8
4  2cell_1    10
5  2cell_1    12
6  2cell_1    14

像往常一样,就可以直接画图了。

# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) + 
geom_boxplot() + 
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
dev.off()

箱线图出来了,看上去还可以,再加点色彩。

# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) + 
geom_boxplot(aes(fill=factor(variable))) + 
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
dev.off()

再看看Violin plot

# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m, aes(x=variable, y=value),color=variable) + 
geom_violin(aes(fill=factor(variable))) + 
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()
dev.off()

还有Jitter plot (这里使用的是ggbeeswarm包)

library(ggbeeswarm)
# 为了更好的效果,只保留其中一个样品的数据
# grepl类似于Linux的grep命令,获取特定模式的字符串

data_m2 <- data_m[grepl("_3", data_m$variable),]

# variable和value为矩阵melt后的两列的名字,内部变量, variable代表了点线的属性,value代表对应的值。
p <- ggplot(data_m2, aes(x=variable, y=value),color=variable) + 
geom_quasirandom(aes(colour=factor(variable))) + 
theme_bw() + theme(panel.grid.major = element_blank(),
panel.grid.minor = element_blank(), legend.key=element_blank()) +
theme(legend.position="none")
# 也可以用geom_jitter(aes(colour=factor(variable)))代替geom_quasirandom(aes(colour=factor(variable)))
# 但个人认为geom_quasirandom给出的结果更有特色

ggsave(p, filename="jitterplot.pdf", width=14, height=8, units=c("cm"))

绘制单个基因 (A)的箱线图

为了更好的展示效果,下面的矩阵增加了样品数量和样品的分组信息。

profile="Name;2cell_1;2cell_2;2cell_3;2cell_4;2cell_5;2cell_6;4cell_1;4cell_2;4cell_3;4cell_4;4cell_5;4cell_6;zygote_1;zygote_2;zygote_3;zygote_4;zygote_5;zygote_6
A;4;6;7;5;8;6;3.2;5.2;5.6;3.6;7.6;4.8;2;4;3;2;4;2.5
B;6;8;9;7;10;8;5.2;7.2;7.6;5.6;9.6;6.8;4;6;5;4;6;4.5"

profile_text <- read.table(text=profile, header=T, row.names=1, quote="",sep=";", check.names=F)

data_m = data.frame(t(profile_text['A',]))
data_m$sample = rownames(data_m)
# 只挑选显示部分
# grepl前面已经讲过用于匹配
data_m[grepl('_[123]', data_m$sample),]
           A   sample
2cell_1  4.0  2cell_1
2cell_2  6.0  2cell_2
2cell_3  7.0  2cell_3
4cell_1  3.2  4cell_1
4cell_2  5.2  4cell_2
4cell_3  5.6  4cell_3
zygote_1 2.0 zygote_1
zygote_2 4.0 zygote_2
zygote_3 3.0 zygote_3

获得样品分组信息 (这个例子比较特殊,样品的分组信息就是样品名字下划线前面的部分)

# 可以利用strsplit分割,取出其前面的字符串
# R中复杂的输出结果多数以列表的形式体现,在之前的矩阵操作教程中
# 提到过用str函数来查看复杂结果的结构,并从中获取信息
group = unlist(lapply(strsplit(data_m$sample,"_"), function(x) x[1]))
data_m$group = group
data_m[grepl('_[123]', data_m$sample),]
           A   sample  group
2cell_1  4.0  2cell_1  2cell
2cell_2  6.0  2cell_2  2cell
2cell_3  7.0  2cell_3  2cell
4cell_1  3.2  4cell_1  4cell
4cell_2  5.2  4cell_2  4cell
4cell_3  5.6  4cell_3  4cell
zygote_1 2.0 zygote_1 zygote
zygote_2 4.0 zygote_2 zygote
zygote_3 3.0 zygote_3 zygote

如果没有这个规律,也可以提到类似于下面的文件,指定样品所属的组的信息。

sampleGroup_text="Sample;Group
zygote_1;zygote
zygote_2;zygote
zygote_3;zygote
zygote_4;zygote
zygote_5;zygote
zygote_6;zygote
2cell_1;2cell
2cell_2;2cell
2cell_3;2cell
2cell_4;2cell
2cell_5;2cell
2cell_6;2cell
4cell_1;4cell
4cell_2;4cell
4cell_3;4cell
4cell_4;4cell
4cell_5;4cell
4cell_6;4cell"

#sampleGroup = read.table(text=sampleGroup_text,sep="\t",header=1,check.names=F,row.names=1)

#data_m <- merge(data_m, sampleGroup, by="row.names")

# 会获得相同的结果,脚本注释掉了以免重复执行引起问题。

矩阵准备好了,开始画图了 (小提琴图做例子,其它类似)

# 调整下样品出现的顺序
data_m$group <- factor(data_m$group, levels=c("zygote","2cell","4cell"))
# group和A为矩阵中两列的名字,group代表了值的属性,A代表基因A对应的表达值。
# 注意看修改了的地方
p <- ggplot(data_m, aes(x=group, y=A),color=group) + 
geom_violin(aes(fill=factor(group))) + 
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
# 图会存储在当前目录的Rplots.pdf文件中,如果用Rstudio,可以不运行dev.off()

长矩阵绘制箱线图

常规矩阵绘制箱线图要求必须是个方正的矩阵输入,而有时想比较的几个组里面检测的值数目不同。比如有三个组,GrpA组检测了6个病人,GrpB组检测了10个病人,GrpC组是12个正常人的检测数据。这时就很难形成一个行位检测值,列为样品的矩阵,长表格模式就适合与这种情况。

long_table <- "Grp;Value
GrpA;10
GrpA;11
GrpA;12
GrpB;5
GrpB;4
GrpB;3
GrpB;2
GrpC;2
GrpC;3"

long_table <- read.table(text=long_table,sep="\t",header=1,check.names=F)

p <- ggplot(data_m, aes(x=Grp, y=Value),color=Grp) + 
geom_violin(aes(fill=factor(Grp))) + 
theme(axis.text.x=element_text(angle=50,hjust=0.5, vjust=0.5)) +
theme(legend.position="none")
p
dev.off()

长表格形式自身就是常规矩阵melt后的格式,这种用来绘制箱线图就很简单了,就不做解释了。

原文发布于微信公众号 - 生信宝典(Bio_data)

原文发表时间:2017-07-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

深度 | 从概念到实践,我们该如何构建自动微分库

30880
来自专栏SimpleAI

令人困惑的TensorFlow【1】

我叫 Jacob,是 Google AI Resident 项目的研究学者。我是在 2017 年夏天加入该项目的,尽管已经拥有了丰富的编程经验,并且对机器学习的...

11720
来自专栏冰霜之地

Google S2 是如何解决空间覆盖最优解问题的?

这篇不出意外就是 Google S2 整个系列的最终篇了。这篇里面会把 regionCoverer 算法都讲解清楚。至于 Google S2 库里面还有很多其他...

41730
来自专栏量子位

PyTorch 0.2发布:更多NumPy特性,高阶梯度、分布式训练等

李林 编译整理 量子位 报道 | 公众号 QbitAI Facebook的机器学习框架(之一)PyTorch今天发布了新版本:0.2.0。 这一版本引入了Num...

384150
来自专栏程序员叨叨叨

8.3 入口函数

通常高级语言程序中只有一个入口函数,不过由于着色程序分为顶点程序和片断程序,两者对应着图形流水线上的不同阶段,所以这两个程序都各有一个入口函数。

18940
来自专栏蜉蝣禅修之道

网络流算法Push-relabel的Python实现

39250
来自专栏深度学习自然语言处理

【笔记】高效率但却没用过的一些numpy函数

最近在看源码的时候,碰到了一些大佬们常用,但自己暂时还没用过的numpy函数,特意来总结下。

7520
来自专栏瓜大三哥

Caffe、TensorFlow、MXnet

Caffe已经很久没有更新过了,曾经的霸主地位果然还是被tensorflow给终结了,特别是从0.8版本开始,tensorflow开始支持分布式,一声叹息…MX...

43790
来自专栏kangvcar

[face_recognition中文文档] 第3节 用法

14030
来自专栏marsggbo

论文笔记模板

作者给了哪些strong conclusion, 又给了哪些weak conclusion?

10410

扫码关注云+社区

领取腾讯云代金券