简谈Spark Streaming的实时计算整合

基于Spark通用计算平台,可以很好地扩展各种计算类型的应用,尤其是Spark提供了内建的计算库支持,像Spark Streaming、Spark SQL、MLlib、GraphX,这些内建库都提供了高级抽象,可以用非常简洁的代码实现复杂的计算逻辑、这也得益于Scala编程语言的简洁性。这里,我们基于1.3.0版本的Spark搭建了计算平台,实现基于Spark Streaming的实时计算。

我们的应用场景是分析用户使用手机App的行为。

手机客户端会收集用户的行为事件(我们以点击事件为例),将数据发送到数据服务器,我们假设这里直接进入到Kafka消息队列。

后端的实时服务会从Kafka消费数据,将数据读出来并进行实时分析,这里选择Spark Streaming,因为Spark Streaming提供了与Kafka整合的内置支持,经过Spark Streaming实时计算程序分析,将结果写入Redis,可以实时获取用户的行为数据,并可以导出进行离线综合统计分析。

Spark Streaming提供了一个叫做DStream(Discretized Stream)的高级抽象,DStream表示一个持续不断输入的数据流,可以基于Kafka、TCP Socket、Flume等输入数据流创建。在内部,一个DStream实际上是由一个RDD序列组成的。Sparking Streaming是基于Spark平台的,也就继承了Spark平台的各种特性,如容错(Fault-tolerant)、可扩展(Scalable)、高吞吐(High-throughput)等。

在Spark Streaming中,每个DStream包含了一个时间间隔之内的数据项的集合,我们可以理解为指定时间间隔之内的一个batch,每一个batch就构成一个RDD数据集,所以DStream就是一个个batch的有序序列,时间是连续的,按照时间间隔将数据流分割成一个个离散的RDD数据集。

我们都知道,Spark支持两种类型操作:Transformations和Actions。Transformation从一个已知的RDD数据集经过转换得到一个新的RDD数据集,这些Transformation操作包括map、filter、flatMap、union、join等,而且Transformation具有lazy的特性,调用这些操作并没有立刻执行对已知RDD数据集的计算操作,而是在调用了另一类型的Action操作才会真正地执行。Action执行,会真正地对RDD数据集进行操作,返回一个计算结果给Driver程序,或者没有返回结果,如将计算结果数据进行持久化,Action操作包括reduceByKey、count、foreach、collect等。关于Transformations和Actions更详细内容,可以查看官网文档。

同样、Spark Streaming提供了类似Spark的两种操作类型,分别为Transformations和Output操作,它们的操作对象是DStream,作用也和Spark类似:Transformation从一个已知的DStream经过转换得到一个新的DStream,而且Spark Streaming还额外增加了一类针对Window的操作,当然它也是Transformation,但是可以更灵活地控制DStream的大小(时间间隔大小、数据元素个数),例如window(windowLength, slideInterval)、countByWindow(windowLength, slideInterval)、reduceByWindow(func, windowLength, slideInterval)等。Spark Streaming的Output操作允许我们将DStream数据输出到一个外部的存储系统,如数据库或文件系统等,执行Output操作类似执行Spark的Action操作,使得该操作之前lazy的Transformation操作序列真正地执行。

本文来自企鹅号 - 科技大咖汇媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏斑斓

大数据 | 理解Spark的核心RDD

与许多专有的大数据处理平台不同,Spark建立在统一抽象的RDD之上,使得它可以以基本一致的方式应对不同的大数据处理场景,包括MapReduce,Streami...

3919
来自专栏Albert陈凯

Hive迁移Saprk SQL的坑和改进办法

Qcon 全球软件开发者大会2016北京站 演讲主题:Spark在360的大规模实践与经验分享 李远策 360-Spark集群概况 ? 360-Spark集...

6317
来自专栏懒人开发

hadoop(1):hadoop概述

hadoop是 Doug Cutting 在 Lucene 之后的一个项目 主要用于 计算 是一个 开源,可靠,可扩展 的分布式计算框架 主要有

1023
来自专栏祝威廉

Spark会把数据都载入到内存么?

很多初学者其实对Spark的编程模式还是RDD这个概念理解不到位,就会产生一些误解。

952
来自专栏灯塔大数据

每周学点大数据 | No.73 在 HDFS 上使用 Spark

编者按:灯塔大数据将每周持续推出《从零开始学大数据算法》的连载,本书为哈尔滨工业大学著名教授王宏志老师的扛鼎力作,以对话的形式深入浅出的从何为大数据说到大数据算...

3747
来自专栏Albert陈凯

3.6 Shuffle机制

3.6 Shuffle机制 在MapReduce框架中,Shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过Shuff...

2914
来自专栏简单聊聊Spark

Spark性能调优篇四之使用Kryo进行序列化操作

        接着上一篇文章,今天介绍一下通过使用Kryo这个东东来进一步降低网络IO的传输量和内存的占用率。在介绍Kryo之前,接下来我们先来对比一下默认的...

3043
来自专栏about云

spark零基础学习线路指导【包括spark2】

问题导读 1.你认为spark该如何入门? 2.你认为spark入门编程需要哪些步骤? 3.本文介绍了spark哪些编程知识?

1053
来自专栏about云

spark零基础学习线路指导

问题导读 1.你认为spark该如何入门? 2.你认为spark入门编程需要哪些步骤? 3.本文介绍了spark哪些编程知识? ? spark...

3985
来自专栏知识分享

串口通信DMA中断

这是以前学32的时候写的,那时候学了32之后感觉32真是太强大了,比51强的没影。关于dma网上有许多的资料,亲们搜搜,这里只贴代码了,其实我也想详详细细地叙述...

3247

扫码关注云+社区

领取腾讯云代金券