前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >机器学习虾扯淡之线性回归No.39

机器学习虾扯淡之线性回归No.39

作者头像
大蕉
发布2018-02-05 18:28:23
5320
发布2018-02-05 18:28:23
举报

今天晚上,整理了一下线性回归的完整的数学推导过程以及应用。

0x00甩定义

首先什么是线性回归?

就是面包屑嘛,我们跟着一个一个面包屑走,然后duang~~在脑里脑补出一条路,然后预测下一个面包屑的位置。

"鲁迅曾经说过:世界上本没有路,走的人多了也就成了路,因为草长不起来。"

鲁迅:我没说过这句话。

线性回归就是要找出这条笔直的路,来拟合数据,然后预测未来。

“JoeJoe老师你这图好丑啊”

“你信不信我疼你一百次啊?!!”

假设我们有N个面包屑。N等于5.

小一 ( x1 , y1 )

小二 ( x2 , y2 )

小三 ( x3 , y3 )

小四 ( x4 , y4 )

小五 ( x5 , y5 )

怎么找到这条路呢?

思考人生ing。

去他妈的思考人生。

啊啊啊啊,找路要紧找路要紧。

好了,就决定这条线,就

f(x) = wx + b

完美!!!完美符合一切情况。

(本文完)

等等等等,啥玩意叫完美符合一切情况?这尼玛啥也没干啊等于。w是几啊?b又是几啊?bbbbb就你bb。

好嘛。。

那我们肯定是误差越小越好,越符合情况越好啊。搬出小学课本查了查,嗯,最小二乘法。

简单来说,就是尽量让直线上预测的点跟实际的点欧拉距离最小。

啥玩意叫欧拉距离啊大蕉,你能不能别卖关子了?

就是我们现在所有说的空间距离,都是欧拉距离,比如,大蕉和小蕉,距离只有1毫米,这样。

也就是要这样。

L(w,b) = ∑ ( f(x) - y )^2

使上面这个值最小。

喔!!!!!我知道了,那这样就可以让曲线完美符合了。

知道你个大头鬼啦!!

作为一个小学生,我知道上面这个是一元二次方程,我直接抛物线求最小值就可以了。完美。

但是吖,我们生活中,遇到的可不仅仅是一元二次吖,可能是N元N次啊,你怎么求?

0x01求最优解

今天只介绍一种解法,就是梯度下降法。

我们定义一个学习率,也叫步长就是每一次走的步伐,步子大了会扯到什么你们自己知道的,我们叫做 α 。首先随便初始化一个w和b。

L(w,b) = ∑ ( f(x) - y )^2 = ∑ (wx + b - y) ^ 2

上面这里x和y都是已知的定值,所以直接代进去就可以求啦。

然后我们分别对w和b求导。

d(w) = dL / dw

d(b) = dL / db

然后令w = w - α * d(w) , b = w - α * d(b)

每次挪一步每次挪一步,总结找到一个局部最小值的,至于能不能找到全局最小值呢?

看运气,步子不要太大,不扯到,有可能可以喔。但是步子大了,又可能跳出局部最小值,找到另外一个局部最小值喔,万一找到了呢?

这里会有三种模式,上面说的是Batch - Gradiant Descent,批量梯度下降,也就是每次把所有的值都代进去算一遍。

第二种是 Stochastic - Gradiant Descent。随机梯度下降,每一次只代入一个值。随机算法随机解,解到哪里算哪里。

还有一种折中算法 Mini-Batch Gradiant Descent。小批量梯度下降。每次代入一小批,然后算一下。

第三种其实是最常用的。第一种把耗时太长,第二种吧太随机了。第三种,马马虎虎,多算几次还是能算好的。

谁叫人丑就要多学习呢?

0x01核函数

有时候我们会发现,这他妈直线哪能描述我的想法啊?不行,我要换,换换换。

我们可以这样,用一个叫核函数的东西,把低维的东西,映射到高维上。

map ( x , y ) => exp ( x , y)

啥叫映射呢?就是我们反过来想。

你关上灯,然后拿起小电筒,照在墙上。

墙就是你这束三维的光在墙这个二维面上的投影。

反过来,我们人脑也可以用一个映射,把这个小投影,还原想象成这束三维的光。

哈?你问我这样做有什么用?

比如说,桌子上猪肉中间有一小块肥肉(二维问题),你要把他挑出来(分类),只能切一刀,还只能切直线,咋办?

机智的小蕉,会把猪肉提起来(变成三维的),然后横着一切,完美。最中间的肥肉就飞了飞了。

从分类来说。

有线性核,多项式核,高斯核,径向基核。

越复杂的核函数,越容易过拟合喔,小心为妙。

0x02正则化

我从两个方面来说这个东西吧,分别是防止过拟合要怎么办?以及为什么这样能防止过拟合。

好了,怕过拟合,咋办?加正则项咯。有这三种,可以单独用也可以打组合拳。

L0 = ||w||0 使得参数非零的个数最小

L1 = ||w||1 使得参数的绝对值的和最小

L2 = ||w||2 使得参数的平方的和最小

这三个都可以防止过拟合,但是L0比较难受,是一个NP-Hard问题,所以一般都用L1或者L2。

好那我们要使得

||w|| <= C 也就是 ||w|| - C <= 0

C是某一个常数。这样怎么去求解呢?

拉格朗日乘子法。

不熟悉的小朋友自行度娘,简单来说就是把约束条件也丢到损失函数里边。

所以损失函数就变成了

L(w,b) = ∑ ( f(x) - y )^2 - λ * (||w|| - C)

然后跟上面一样去求最小值就可以啦。

下面这些听起来很炫酷的算法,其实就是加正则项啦

Lasso 回归 -> 加了L1正则项的线性回归

Ridge 回归 -> 加了L2正则项的线性回归

ElasticNet -> 加了L1和L2正则项混合双大的线性回归

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-08-21,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 一名叫大蕉的程序员 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
大数据
全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档