专栏首页向治洪Kotlin的委托属性和区间

Kotlin的委托属性和区间

委托属性

委托属性 是一种通过委托实现拥有 getter 和可选 setter 的 属性,并允许实现可复用的自定义属性。例如:

class Example {
    var p: String by Delegate()
}

委托对象必须实现一个拥有 getValue() 方法的操作符,以及 setValue() 方法来实现读/写属性。些方法将会接受包含对象实例以及属性元数据作为额外参数。当一个类声明委托属性时,编译器生成的代码会和如下 Java 代码相似。

public final class Example {
   @NotNull
   private final Delegate p$delegate = new Delegate();
   // $FF: synthetic field
   static final KProperty[] $$delegatedProperties = new KProperty[]{(KProperty)Reflection.mutableProperty1(new MutablePropertyReference1Impl(Reflection.getOrCreateKotlinClass(Example.class), "p", "getP()Ljava/lang/String;"))};

   @NotNull
   public final String getP() {
      return this.p$delegate.getValue(this, $$delegatedProperties[0]);
   }

   public final void setP(@NotNull String var1) {
      Intrinsics.checkParameterIsNotNull(var1, "<set-?>");
      this.p$delegate.setValue(this, $$delegatedProperties[0], var1);
   }
}

一些静态属性元数据被加入到类中,委托在类的构造函数中初始化,并在每次读写属性时调用。

委托实例

在上面的例子中,创建了一个新的委托实例来实现属性。这就要求委托的实现是有状态的,例如,当其内部缓存计算结果时:

class StringDelegate {
    private var cache: String? = null

    operator fun getValue(thisRef: Any?, property: KProperty<*>): String {
        var result = cache
        if (result == null) {
            result = someOperation()
            cache = result
        }
        return result
    }
}

与此同时,当需要额外的参数时,需要建立新的委托实例,并将其传递到构造器中。

class Example {
    private val nameView by BindViewDelegate<TextView>(R.id.name)
}

但也有一些情况是只需要一个委托实例来实现任何属性的:当委托是无状态,并且它所需要的唯一变量就是已经提供好的包含对象实例和委托名称时,可以通过将其声明为 object 来替代 class 实现一个单例委托。

举个例子,下面的单例委托从 Android Activity 中取回与给定 tag 相匹配的 Fragment。

object FragmentDelegate {
    operator fun getValue(thisRef: Activity, property: KProperty<*>): Fragment? {
        return thisRef.fragmentManager.findFragmentByTag(property.name)
    }
}

类似地,任何已有类都可以通过扩展变成委托。getValue() 和 setValue() 也可以被声明成 扩展方法 来实现。Kotlin 已经提供了内置的扩展方法来允许将 Map and MutableMap 实例用作委托,属性名作为其中的键。 如果你选择复用相同的局部委托实例来在一个类中实现多属性,你需要在构造函数中初始化实例。 注意:从 Kotlin 1.1 开始,也可以声明 方法局部变量声明为委托属性。在这种情况下,委托可以直到该变量在方法内部声明的时候才去初始化,而不必在构造函数中就执行初始化。

泛型委托

委托方法也可以被声明成泛型的,这样一来不同类型的属性就可以复用同一个委托类了。

private var maxDelay: Long by SharedPreferencesDelegate<Long>()

然而,如果像上例那样对基本类型使用泛型委托的话,即便声明的基本类型非空,也会在每次读写属性的时候触发装箱和拆箱的操作。

说明:对于非空基本类型的委托属性来说,最好使用给定类型的特定委托类而不是泛型委托来避免每次访问属性时增加装箱的额外开销。

标准委托:lazy()

针对常见情形,Kotlin 提供了一些标准委托,如 Delegates.notNull()、 Delegates.observable() 和 lazy()。 lazy() 是一个在第一次读取时通过给定的 lambda 值来计算属性的初值,并返回只读属性的委托。

private val dateFormat: DateFormat by lazy {
    SimpleDateFormat("dd-MM-yyyy", Locale.getDefault())
}

这是一种简洁的延迟高消耗的初始化至其真正需要时的方式,在保留代码可读性的同时提升了性能。

需要注意的是,lazy() 并不是内联函数,传入的 lambda 参数也会被编译成一个额外的 Function 类,并且不会被内联到返回的委托对象中。 经常被忽略的一点是 lazy() 有可选的 mode 参数 来决定应该返回 3 种委托的哪一种:

public fun <T> lazy(initializer: () -> T): Lazy<T> = SynchronizedLazyImpl(initializer)
public fun <T> lazy(mode: LazyThreadSafetyMode, initializer: () -> T): Lazy<T> =
        when (mode) {
            LazyThreadSafetyMode.SYNCHRONIZED -> SynchronizedLazyImpl(initializer)
            LazyThreadSafetyMode.PUBLICATION -> SafePublicationLazyImpl(initializer)
            LazyThreadSafetyMode.NONE -> UnsafeLazyImpl(initializer)
        }

默认模式 LazyThreadSafetyMode.SYNCHRONIZED 将提供相对耗费昂贵的 双重检查锁 来保证一旦属性可以从多线程读取时初始化块可以安全地执行。 如果你确信属性只会在单线程(如主线程)被访问,那么可以选择 LazyThreadSafetyMode.NONE 来代替,从而避免使用锁的额外开销。

val dateFormat: DateFormat by lazy(LazyThreadSafetyMode.NONE) {
    SimpleDateFormat("dd-MM-yyyy", Locale.getDefault())
}

区间

区间 是 Kotlin 中用来代表一个有限的值集合的特殊表达式。值可以是任何 Comparable 类型。 这些表达式的形式都是创建声明了 ClosedRange 接口的方法。创建区间的主要方法是 .. 操作符方法。

包含

区间表达式的主要作用是使用 in 和 !in 操作符实现包含和不包含。

if (i in 1..10) {
    println(i)
}

该实现针对非空基本类型的区间(包括 Int、Long、Byte、Short、Float、Double 以及 Char 的值)实现了优化,所以上面的代码可以被优化成这样:

if(1 <= i && i <= 10) {
   System.out.println(i);
}

零额外支出并且没有额外对象开销。区间也可以被包含在 when 表达式中:

val message = when (statusCode) {
    in 200..299 -> "OK"
    in 300..399 -> "Find it somewhere else"
    else -> "Oops"
}

相比一系列的 if{…} else if{…} 代码块,这段代码在不降低效率的同时提高了代码的可读性。然而,如果在声明和使用之间有至少一次间接调用的话,range 会有一些微小的额外开销。比如下面的代码:

private val myRange get() = 1..10

fun rangeTest(i: Int) {
    if (i in myRange) {
        println(i)
    }
}

在编译后会创建一个额外的 IntRange 对象:

private final IntRange getMyRange() {
   return new IntRange(1, 10);
}

public final void rangeTest(int i) {
   if(this.getMyRange().contains(i)) {
      System.out.println(i);
   }
}

将属性的 getter 声明为 inline 的方法也无法避免这个对象的创建。这是 Kotlin 1.1 编译器可以优化的一个点。至少通过这些特定的区间类避免了装箱操作。

说明:尽量在使用时直接声明非空基本类型的区间,不要间接调用,来避免额外区间类的创建。或者直接声明为常量来复用。

区间也可以用于其他实现了 Comparable 的非基本类型。

if (name in "Alfred".."Alicia") {
    println(name)
}

在这种情况下,最终实现并不会优化,而且总是会创建一个 ClosedRange 对象,如下面编译后的代码所示:

if(RangesKt.rangeTo((Comparable)"Alfred", (Comparable)"Alicia")
   .contains((Comparable)name)) {
   System.out.println(name);
}

迭代:for 循环

整型区间 (除了 Float 和 Double之外其他的基本类型)也是 级数:它们可以被迭代。这就可以将经典 Java 的 for 循环用一个更短的表达式替代。

for (i in 1..10) {
    println(i)
}

经过编译器优化后的代码实现了零额外开销:

int i = 1;
byte var3 = 10;
if(i <= var3) {
   while(true) {
      System.out.println(i);
      if(i == var3) {
         break;
      }
      ++i;
   }
}

如果要反向迭代,可以使用 downTo() 中缀方法来代替 ..:

for (i in 10 downTo 1) {
    println(i)
}

编译之后,这也实现了零额外开销:

int i = 10;
byte var3 = 1;
if(i >= var3) {
   while(true) {
      System.out.println(i);
      if(i == var3) {
         break;
      }
      --i;
   }
}

然而,其他迭代器参数并没有如此好的优化。反向迭代还有一种结果相同的方式,使用 reversed() 方法结合区间:

for (i in (1..10).reversed()) {
    println(i)
}

编译后的代码并没有看起来那么少:

IntProgression var10000 = RangesKt.reversed((IntProgression)(new IntRange(1, 10)));
int i = var10000.getFirst();
int var3 = var10000.getLast();
int var4 = var10000.getStep();
if(var4 > 0) {
   if(i > var3) {
      return;
   }
} else if(i < var3) {
   return;
}

while(true) {
   System.out.println(i);
   if(i == var3) {
      return;
   }

   i += var4;
}

会创建一个临时的 IntRange 对象来代表区间,然后创建另一个 IntProgression 对象来反转前者的值。 事实上,任何结合不止一个方法来创建递进都会生成类似的至少创建两个微小递进对象的代码。 这个规则也适用于使用 step() 中缀方法来操作递进的步骤,即使只有一步:

for (i in 1..10 step 2) {
    println(i)
}

一个次要提示,当生成的代码读取 IntProgression 的 last 属性时会通过对边界和步长的小小计算来决定准确的最后值。在上面的代码中,最终值是 9。

最后,until() 中缀函数对于迭代也很有用,该函数(执行结果)不包含最大值。

for (i in 0 until size) {
    println(i)
}

遗憾的是,编译器并没有针对这个经典的包含区间围优化,迭代器依然会创建区间对象:

IntRange var10000 = RangesKt.until(0, size);
int i = var10000.getFirst();
int var1 = var10000.getLast();
if(i <= var1) {
   while(true) {
      System.out.println(i);
      if(i == var1) {
         break;
      }
      ++i;
   }
}

这是 Kotlin 1.1 可以提升的另一个点,与此同时,可以通过这样写来优化代码:

for (i in 0..size - 1) {
    println(i)
}

说明:

for 循环内部的迭代,最好只用区间表达式的一个单独方法来调用 .. 或 downTo() 来避免额外临时递进对象的创建。

迭代:forEach()

作为 for 循环的替代,使用区间内联的扩展方法 forEach() 来实现相似的效果可能更吸引人。

(1..10).forEach {
    println(it)
}

但如果仔细观察这里使用的 forEach() 方法签名的话,你就会注意到并没有优化区间,而只是优化了 Iterable,所以需要创建一个 iterator。下面是编译后代码的 Java 形式:

Iterable $receiver$iv = (Iterable)(new IntRange(1, 10));
Iterator var1 = $receiver$iv.iterator();

while(var1.hasNext()) {
   int element$iv = ((IntIterator)var1).nextInt();
   System.out.println(element$iv);
}

这段代码相比前者更为低效,原因是为了创建一个 IntRange 对象,还需要额外创建 IntIterator。但至少它还是生成了基本类型的值。迭代区间时,最好只使用 for 循环而不是区间上的 forEach() 方法来避免额外创建一个迭代器。

迭代:集合

Kotlin 标准库提供了内置的 indices 扩展属性来生成数组和 Collection 的区间。

val list = listOf("A", "B", "C")
for (i in list.indices) {
    println(list[i])
}

令人惊讶的是,对这个 indices 的迭代得到了编译器的优化:

List list = CollectionsKt.listOf(new String[]{"A", "B", "C"});
int i = 0;
int var2 = ((Collection)list).size() - 1;
if(i <= var2) {
   while(true) {
      Object var3 = list.get(i);
      System.out.println(var3);
      if(i == var2) {
         break;
      }
      ++i;
   }
}

从上面的代码中我们可以看到没有创建 IntRange 对象,列表的迭代是以最高效率的方式运行的。

这适用于数组和实现了 Collection 的类,所以你如果期望相同的迭代器性能的话,可以尝试在特定的类上使用自己的 indices 扩展属性。

inline val SparseArray<*>.indices: IntRange
    get() = 0..size() - 1

fun printValues(map: SparseArray<String>) {
    for (i in map.indices) {
        println(map.valueAt(i))
    }
}

但编译之后,我们可以发现这并没有那么高效率,因为编译器无法足够智能地避免区间对象的产生:

public static final void printValues(@NotNull SparseArray map) {
   Intrinsics.checkParameterIsNotNull(map, "map");
   IntRange var10002 = new IntRange(0, map.size() - 1);
   int i = var10002.getFirst();
   int var2 = var10002.getLast();
   if(i <= var2) {
      while(true) {
         Object $receiver$iv = map.valueAt(i);
         System.out.println($receiver$iv);
         if(i == var2) {
            break;
         }
         ++i;
      }
   }
}

所以,我会建议你避免声明自定义的 lastIndex 扩展属性:

inline val SparseArray<*>.lastIndex: Int
    get() = size() - 1

fun printValues(map: SparseArray<String>) {
    for (i in 0..map.lastIndex) {
        println(map.valueAt(i))
    }
}

说明:当迭代没有声明 Collection 的自定义集合 时,直接在 for 循环中写自己的序列区间而不是依赖方法或属性来生成区间,从而避免区间对象的创建。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Android逆向分析(2) APK的打包与安装背后的故事

    前言 上一次我们反编译了手Q,并遇到了Apktool反编译直接crash的问题,虽然笔者很想在这次解决这个问题,但在解决途中,发现该保护依赖于很多知识,所以本次...

    xiangzhihong
  • iOS Hybrid 框架

    前言 Hybrid App(混合模式移动应用)是指介于web-app、native-app这两者之间的app,兼具“Native App良好用户交互体验的优势”...

    xiangzhihong
  • 手把手教你从Core Data迁移到Realm

    前言 Hybrid App(混合模式移动应用)是指介于web-app、native-app这两者之间的app,兼具“Native App良好用户交互体验的优势”...

    xiangzhihong
  • Kotlin开发笔记之委托属性与区间(译)

    本文主要给大家介绍了关于Kotlin委托属性与区间的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。

    砸漏
  • cmd实现循环调用

    cmd是windows的命令,可以辅助我们做很多事情,今天实现一个调用一个程序n次的实例:

    付威
  • 关系型数据库和非关系型数据库

    一 三范式 1,所有列必须为原子化列 2,设计时需要主键列 3,所有非主键列不能依靠传递与主键列发生关系(所有列与主键列发生的都是直接关系) 生活中的...

    98k
  • 10个python3常用排序算法详细说明与实例(快速排序,冒泡排序,桶排序,基数排序,堆排序,希尔排序,归并排序,计数排序)

    我简单的绘制了一下排序算法的分类,蓝色字体的排序算法是我们用python3实现的,也是比较常用的排序算法。

    砸漏
  • mybatis学习之分页

    分页一般分为物理分页:先查询所有值再分页输出,逻辑分页:直接分页查询输出,mybatis支持物理分页,如下: 1、物理分页: mapper映射: <select...

    用户1141560
  • c++调用自己编写的静态库(通过eclipse)

    转:https://blog.csdn.net/hao5335156/article/details/80282829

    墨文
  • LeetCode 605. 种花问题

    假设你有一个很长的花坛,一部分地块种植了花,另一部分却没有。可是,花卉不能种植在相邻的地块上,它们会争夺水源,两者都会死去。

    Michael阿明

扫码关注云+社区

领取腾讯云代金券