谷歌教你学 AI-第三讲简单易懂的估算器

Google Cloud发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学者了解机器学习的方方面面。

前两期我们分别讲到了机器学习的概念和具体步骤,今天让我们来看到第三讲,使用TensorFlow Estimator进行机器学习。

回顾之前内容:

谷歌教你学 AI -第一讲机器学习是什么?

谷歌教你学 AI -第二讲机器学习的7个步骤

CDA字幕组目前在对该系列视频进行汉化,之后将继续连载,欢迎关注和支持~

主讲人还是来自Google Cloud的开发人员,华裔小哥Yufeng Guo。让我们在学习AI知识的同时来提高英语吧。

附有中文字幕的视频如下:

AI Adventures--第三讲简单易懂的估算器

针对不方便打开视频的小伙伴,CDA字幕组也贴心的整理了文字版本,如下:

视频内容

机器学习棒极了,除了它迫使你用到高数的时候。进行机器学习的工具得到了极大地发展,训练模型也从未如此简单。

我们将利用对数据集的理解,而不是对纯粹数学知识的理解,以此编程得出模型,最终得出相应见解。在本期视频,我们将用少部分代码训练一个简单的分类器。

TensorFlow Estimator

为了训练分类器,我们将使用TensorFlow。谷歌的开源机器学习库。 TensorFlow有很庞大的API,但是我们要关注的是当中的高级API,称为Estimator(估算器)

Estimator为我们把训练循环打包起来,这样我们可以通过配置来训练模型,而不是手工进行编程。从而去除了许多样板文件,让我们在更高的层面上思考抽象问题。意味着我们能够参与到机器学习有意思的部分,而不用为各个细节而烦恼。

由于目前为止我们只涉及到线性模型,因此将主要围绕该部分。之后会再看到这个例子,用来拓展其能力。

鸢尾花分类

这次我们将构建一个模型,用来区分三种类似的花。我感觉这可能没有上一期区分葡萄酒和啤酒那么有意思,但是这些花朵更难区分,从而构成一项有趣的挑战。

我们将对不同种类的鸢尾花进行区分。我不确定我能区分鸢尾花和玫瑰,但是我们模型的目的是区分出山鸢尾(Iris Setosa)、杂色鸢尾(Iris Versicolour)和维吉尼亚鸢尾(Iris Virginica)。

山鸢尾(Iris Setosa)、杂色鸢尾(Iris Versicolour)和维吉尼亚鸢尾(Iris Virginica)

我们有鸢尾花卉数据集,包括花瓣和花萼长宽度数据。这四列将作为我们的“特征”。

加载数据

在引入TensorFlow和NumPy后,我们将加载数据集,使用TensorFlow的函数load_csv_with_header 。数据或者特征呈现为浮点数。同时每行数据或对象的标签记录为整型数(integer):0、1、2,对应三种花。

我输出了加载的结果,现在我们可以用命名的属性访问训练数据和相关标签或对象。

建立模型

下面我们开始建模。首先我们需要设定特征列。特征列决定了进入模型的数据类型。我们将用到四维特征列表示特征,称为“flower_features”。

使用估算器(estimator)建模超级简单。使用`tf.estimator.LinearClassifier`,我们可以通过传递之前创建的特征列让模型实例化;该模型得出的不同输出数字,比如这里是3;还有存储模型训练过程和输出文件的目录。这使TensorFlow能够在有需要的情况下,继续进行之前的训练。

输入函数

分类对象能帮我们记录状态,然后我们差不多可以进入训练阶段了。最后还有一个连接模型和训练数据的部分,即输入函数。输入函数的作用是创建TensorFlow操作,从而从模型中生成数据。

如今我们从原始数据到输入函数,通过数据,通过特征列的映射,进入到模型中。注意,我们对特征使用定义特征列的相同名称。这样数据才会是相关联的。

运行训练

现在可以开始训练了。为了训练模型,我们要运行classifier.train()函数,当中输入函数作为实参。就这样我们把数据集和模型连接起来。

训练函数处理训练回路,对数据集进行迭代,一步步提高性能。就这样我们完成了一千个训练步骤! 我们的数据集不大,因此完成得很快。

评估

现在该对结果进行评估了。我们可以使用之前相同的分类对象,因为这具有模型的训练状态。为了确定我们模型的性能,我们可以运行classifier.evaluate()函数,传递到测试数据集,从返回的指标中提取准确率。

我们的准确率为96.66%! 很不错嘛!!

Estimators: 简单的工作流程

让我们停下来,回顾一下使用Estimator我们目前实现了哪些成果。

Estimator API 为我们提供了很棒的工作流程,从获取原始数据,通过输入函数传递,设立特色列和模型结构,运行训练,进行评估。容易理解的框架让我们能够思考数据和其性能,而不是依赖数学,这太棒了!

下期预告

在本期视频中,我们看到了TensorFlow高级API中的一个简单版本,使用Estimator。在之后的视频中,我们将探究如何对模型进行扩展,使用更多复杂的数据,添加更多高级特征。

原文发布于微信公众号 - CDA数据分析师(cdacdacda)

原文发表时间:2018-01-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

R语言中的情感分析与机器学习

利用机器学习可以很方便的做情感分析。本篇文章将介绍在R语言中如何利用机器学习方法来做情感分析。在R语言中,由Timothy P.Jurka开发的情感分析以及更...

45330
来自专栏机器之心

资源 | 用自注意力GAN为百年旧照上色:效果惊艳,多图预警!

项目地址:https://github.com/jantic/DeOldify/blob/master/README.md

11760
来自专栏机器之心

学界 | 斯坦福提出神经任务编程NTP:让机器人从层级任务中学习

选自arXiv 机器之心编译 参与:朱乾树、蒋思源 斯坦福视觉与学习实验室与加州大学提出神经任务编程(NTP),它可以将指定任务作为输入,并递归地将该任务分解成...

36990
来自专栏人工智能

谷歌教你学 AI-第三讲简单易懂的估算器

翻译/校对: Mika 本文为 CDA 数据分析师原创作品,转载需授权 Google 发布了名为"AI Adventures"的系列视频,用简单易懂的语言让初学...

21290
来自专栏机器之心

资源 | 可视化工具Yellowbrick:超参与行为的可视化带来更优秀的实现

17030
来自专栏生信技能树

第5篇:对ATAC-Seq/ChIP-seq的质量评估(二)——ChIPQC

第4篇:对ATAC-Seq/ChIP-seq的质量评估(一)——phantompeakqualtools

56830
来自专栏最新技术

R语言中的非线性分类

你可以在这篇文章中找到8种在R语言中实现的非线性方法,每一种方法都做好了为你复制粘贴及修改你问题的准备。

318100
来自专栏PPV课数据科学社区

R语言中的情感分析与机器学习

利用机器学习可以很方便的做情感分析。本篇文章将介绍在R语言中如何利用机器学习方法来做情感分析。在R语言中,由Timothy P.Jurka开发的情感分析以及更一...

39360
来自专栏深度学习之tensorflow实战篇

SPSS Modeler 介绍决策树

本文将通过 SPSS Modeler 介绍决策树 (Decision tree) 演算法于银行行销领域的应用实例。通过使用网路公开电销资料建立不同决策树模型,分...

37580
来自专栏CreateAMind

deepmind 做通用人工智能的思路

Automated discovery of early visual concepts from raw image data is a major open...

13920

扫码关注云+社区

领取腾讯云代金券