前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >整合Kafka到Spark Streaming——代码示例和挑战

整合Kafka到Spark Streaming——代码示例和挑战

作者头像
CSDN技术头条
发布2018-02-08 18:13:34
1.4K0
发布2018-02-08 18:13:34
举报
文章被收录于专栏:CSDN技术头条CSDN技术头条

作者Michael G. Noll是瑞士的一位工程师和研究员,效力于Verisign,是Verisign实验室的大规模数据分析基础设施(基础Hadoop)的技术主管。本文,Michael详细的演示了如何将Kafka整合到Spark Streaming中。期间,Michael还提到了将Kafka整合到Spark Streaming中的一些现状,非常值得阅读,虽然有一些信息在Spark 1.2版本中已发生了一些变化,比如HA策略:通过Spark Contributor、Spark布道者陈超我们了解到,在Spark 1.2版本中,Spark Streaming开始支持fully HA模式(选择使用),通过添加一层WAL(Write Ahead Log),每次收到数据后都会存在HDFS上,从而避免了以前版本中的数据丢失情况,但是不可避免的造成了一定的开销,需要开发者自行衡量。

以下为译文

作为一个实时大数据处理工具,Spark Sreaming近日一直被广泛关注,与Apache Storm的对比也经常出现。但是依我说,缺少与Kafka整合,任何实时大数据处理工具都是不完整的,因此我将一个示例Spark Streaming应用程序添加到kafka-storm-starter,并且示范如何从Kafka读取,以及如何写入到Kafka。在这个过程中,我还使用Avro作为数据格式,以及Twitter Bijection进行数据序列化。

在本篇文章,我将详细地讲解这个Spark Streaming示例;同时,我还会穿插当下Spark Streaming与Kafka整合的一些焦点话题。免责声明:这是我首次试验Spark Streaming,仅作为参考。

当下,这个Spark Streaming示例被上传到GitHub,下载访问:kafka-storm-starter。项目的名称或许会让你产生某些误解,不过,不要在意这些细节:)

什么是Spark Streaming

Spark Streaming是Apache Spark的一个子项目。Spark是个类似于Apache Hadoop的开源批处理平台,而Spark Streaming则是个实时处理工具,运行在Spark引擎之上。

Spark Streaming vs. Apache Storm

Spark Streaming与Apache Storm有一些相似之处,后者是当下最流行的大数据处理平台。前不久,雅虎的Bobby Evans和Tom Graves曾发表过一个“Spark and Storm at Yahoo!”的演讲,在这个演讲中,他们对比了两个大平台,并提供了一些选择参考。类似的,Hortonworks的P.Taylor Goetz也分享过名为Apache Storm and Spark Streaming Compared的讲义。

这里,我也提供了一个非常简短的对比:对比Spark Streaming,Storm的产业采用更高,生产环境应用也更稳定。但是从另一方面来说,对比Storm,Spark拥有更清晰、等级更高的API,因此Spark使用起来也更加愉快,最起码是在使用Scala编写Spark应用程序的情况(毫无疑问,我更喜欢Spark中的API)。但是,请别这么直接的相信我的话,多看看上面的演讲和讲义。

不管是Spark还是Storm,它们都是Apache的顶级项目,当下许多大数据平台提供商也已经开始整合这两个框架(或者其中一个)到其商业产品中,比如Hortonworks就同时整合了Spark和Storm,而Cloudera也整合了Spark。

附录:Spark中的Machines、cores、executors、tasks和receivers

本文的后续部分将讲述许多Spark和Kafka中的parallelism问题,因此,你需要掌握一些Spark中的术语以弄懂这些环节。

  • 一个Spark集群必然包含了1个以上的工者作节点,又称为从主机(为了简化架构,这里我们先抛弃开集群管理者不谈)。
  • 一个工作者节点可以运行一个以上的executor
  • Executor是一个用于应用程序或者工作者节点的进程,它们负责处理tasks,并将数据保存到内存或者磁盘中。每个应用程序都有属于自己的executors,一个executor则包含了一定数量的cores(也被称为slots)来运行分配给它的任务。
  • Task是一个工作单元,它将被传送给executor。也就是说,task将是你应用程序的计算内容(或者是一部分)。SparkContext将把这些tasks发送到executors进行执行。每个task都会占用父executor中的一个core(slot)。
  • Receiver(API,文档)将作为一个长期运行的task跑在一个executor上。每个receiver都会负责一个所谓的input DStream(比如从Kafka中读取的一个输入流),同时每个receiver(input DStream)占用一个core/slot。
  • input DStream:input DStream是DStream的一个类型,它负责将Spark Streaming连接到外部的数据源,用于读取数据。对于每个外部数据源(比如Kafka)你都需要配置一个input DStream。一个Spark Streaming会通过一个input DStream与一个外部数据源进行连接,任何后续的DStream都会建立标准的DStreams。

在Spark的执行模型,每个应用程序都会获得自己的executors,它们会支撑应用程序的整个流程,并以多线程的方式运行1个以上的tasks,这种隔离途径非常类似Storm的执行模型。一旦引入类似YARN或者Mesos这样的集群管理器,整个架构将会变得异常复杂,因此这里将不会引入。你可以通过Spark文档中的Cluster Overview了解更多细节。

整合Kafka到Spark Streaming

概述

简而言之,Spark是支持Kafka的,但是这里存在许多不完善的地方。

Spark代码库中的KafkaWordCount对于我们来说是个非常好的起点,但是这里仍然存在一些开放式问题。

特别是我想了解如何去做:

  • 从kafaka中并行读入。在Kafka,一个话题(topic)可以有N个分区。理想的情况下,我们希望在多个分区上并行读取。这也是Kafka spout in Storm的工作。
  • 从一个Spark Streaming应用程序向Kafka写入,同样,我们需要并行执行。

在完成这些操作时,我同样碰到了Spark Streaming和/或Kafka中一些已知的问题,这些问题大部分都已经在Spark mailing list中列出。在下面,我将详细总结Kafka集成到Spark的现状以及一些常见问题。

Kafka中的话题、分区(partitions)和parallelism

详情可以查看我之前的博文:Apache Kafka 0.8 Training Deck and Tutorial和Running a Multi-Broker Apache Kafka 0.8 Cluster on a Single Node。

Kafka将数据存储在话题中,每个话题都包含了一些可配置数量的分区。话题的分区数量对于性能来说非常重要,而这个值一般是消费者parallelism的最大数量:如果一个话题拥有N个分区,那么你的应用程序最大程度上只能进行N个线程的并行,最起码在使用Kafka内置Scala/Java消费者API时是这样的。

与其说应用程序,不如说Kafka术语中的消费者群(consumer group)。消费者群,通过你选择的字符串识别,它是逻辑消费者应用程序集群范围的识别符。同一个消费者群中的所有消费者将分担从一个指定Kafka话题中的读取任务,同时,同一个消费组中所有消费者从话题中读取的线程数最大值即是N(等同于分区的数量),多余的线程将会闲置。

多个不同的Kafka消费者群可以并行的运行:毫无疑问,对同一个Kafka话题,你可以运行多个独立的逻辑消费者应用程序。这里,每个逻辑应用程序都会运行自己的消费者线程,使用一个唯一的消费者群id。而每个应用程序通常可以使用不同的read parallelisms(见下文)。当在下文我描述不同的方式配置read parallelisms时,我指的是如何完成这些逻辑消费者应用程序中的一个设置。

这里有一些简单的例子

  • 你的应用程序使用“terran”消费者群id对一个名为“zerg.hydra”的kafka话题进行读取,这个话题拥有10个分区。如果你的消费者应用程序只配置一个线程对这个话题进行读取,那么这个线程将从10个分区中进行读取。
  • 同上,但是这次你会配置5个线程,那么每个线程都会从2个分区中进行读取。
  • 同上,这次你会配置10个线程,那么每个线程都会负责1个分区的读取。
  • 同上,但是这次你会配置多达14个线程。那么这14个线程中的10个将平分10个分区的读取工作,剩下的4个将会被闲置。

这里我们不妨看一下现实应用中的复杂性——Kafka中的再平衡事件。在Kafka中,再平衡是个生命周期事件(lifecycle event),在消费者加入或者离开消费者群时都会触发再平衡事件。这里我们不会进行详述,更多再平衡详情可参见我的Kafka training deck一文。

你的应用程序使用消费者群id“terran”,并且从1个线程开始,这个线程将从10个分区中进行读取。在运行时,你逐渐将线程从1个提升到14个。也就是说,在同一个消费者群中,parallelism突然发生了变化。毫无疑问,这将造成Kafka中的再平衡。一旦在平衡结束,你的14个线程中将有10个线程平分10个分区的读取工作,剩余的4个将会被闲置。因此如你想象的一样,初始线程以后只会读取一个分区中的内容,将不会再读取其他分区中的数据。

现在,我们终于对话题、分区有了一定的理解,而分区的数量将作为从Kafka读取时parallelism的上限。但是对于一个应用程序来说,这种机制会产生一个什么样的影响,比如一个Spark Streaming job或者 Storm topology从Kafka中读取数据作为输入。

1. Read parallelism:通常情况下,你期望使用N个线程并行读取Kafka话题中的N个分区。同时,鉴于数据的体积,你期望这些线程跨不同的NIC,也就是跨不同的主机。在Storm中,这可以通过TopologyBuilder#setSpout()设置Kafka spout的parallelism为N来实现。在Spark中,你则需要做更多的事情,在下文我将详述如何实现这一点。

2. Downstream processing parallelism:一旦使用Kafka,你希望对数据进行并行处理。鉴于你的用例,这种等级的parallelism必然与read parallelism有所区别。如果你的用例是计算密集型的,举个例子,对比读取线程,你期望拥有更多的处理线程;这可以通过从多个读取线程shuffling或者网路“fanning out”数据到处理线程实现。因此,你通过增长网络通信、序列化开销等将访问交付给更多的cores。在Storm中,你通过shuffle grouping将Kafka spout shuffling到下游的bolt中。在Spark中,你需要通过DStreams上的repartition转换来实现。

通常情况下,大家都渴望去耦从Kafka的parallelisms读取,并立即处理读取来的数据。在下一节,我将详述使用Spark Streaming从Kafka中的读取和写入。

从Kafka中读取

Spark Streaming中的Read parallelism

类似Kafka,Read parallelism中也有分区的概念。了解Kafka的per-topic话题与RDDs in Spark中的分区没有关联非常重要。

Spark Streaming中的KafkaInputDStream(又称为Kafka连接器)使用了Kafka的高等级消费者API,这意味着在Spark中为Kafka设置read parallelism将拥有两个控制按钮。

1. Input DStreams的数量。因为Spark在每个Input DStreams都会运行一个receiver(=task),这就意味着使用多个input DStreams将跨多个节点并行进行读取操作,因此,这里寄希望于多主机和NICs。

2. Input DStreams上的消费者线程数量。这里,相同的receiver(=task)将运行多个读取线程。这也就是说,读取操作在每个core/machine/NIC上将并行的进行。

在实际情况中,第一个选择显然更是大家期望的。

为什么会这样?首先以及最重要的,从Kafka中读取通常情况下会受到网络/NIC限制,也就是说,在同一个主机上你运行多个线程不会增加读的吞吐量。另一方面来讲,虽然不经常,但是有时候从Kafka中读取也会遭遇CPU瓶颈。其次,如果你选择第二个选项,多个读取线程在将数据推送到blocks时会出现锁竞争(在block生产者实例上,BlockGenerator的“+=”方法真正使用的是“synchronized”方式)。

input DStreams建立的RDDs分区数量:KafkaInputDStream将储存从Kafka中读取的每个信息到Blocks。从我的理解上,一个新的Block由spark.streaming.blockInterval在毫秒级别建立,而每个block都会转换成RDD的一个分区,最终由DStream建立。如果我的这种假设成立,那么由KafkaInputDStream建立的RDDs分区数量由batchInterval/spark.streaming.blockInterval决定,而batchInterval则是数据流拆分成batches的时间间隔,它可以通过StreamingContext的一个构造函数参数设置。举个例子,如果你的批时间价格是2秒(默认情况下),而block的时间间隔是200毫秒(默认情况),那么你的RDD将包含10个分区。如果有错误的话,可以提醒我。

选项1:控制input DStreams的数量

下面这个例子可以从Spark Streaming Programming Guide中获得:

在这个例子中,我们建立了5个input DStreams,因此从Kafka中读取的工作将分担到5个核心上,寄希望于5个主机/NICs(之所以说是寄希望于,因为我也不确定Spark Streaming task布局策略是否会将receivers投放到多个主机上)。所有Input Streams都是“terran”消费者群的一部分,而Kafka将保证topic的所有数据可以同时对这5个input DSreams可用。换句话说,这种“collaborating”input DStreams设置可以工作是基于消费者群的行为是由Kafka API提供,通过KafkaInputDStream完成。

在这个例子中,我没有提到每个input DSream会建立多少个线程。在这里,线程的数量可以通过KafkaUtils.createStream方法的参数设置(同时,input topic的数量也可以通过这个方法的参数指定)。在下一节中,我们将通过实际操作展示。

但是在开始之前,在这个步骤我先解释几个Spark Streaming中常见的几个问题,其中有些因为当下Spark中存在的一些限制引起,另一方面则是由于当下Kafka input DSreams的一些设置造成:

当你使用我上文介绍的多输入流途径,而这些消费者都是属于同一个消费者群,它们会给消费者指定负责的分区。这样一来则可能导致syncpartitionrebalance的失败,系统中真正工作的消费者可能只会有几个。为了解决这个问题,你可以把再均衡尝试设置的非常高,从而获得它的帮助。

然后,你将会碰到另一个坑——如果你的receiver宕机(OOM,亦或是硬件故障),你将停止从Kafka接收消息。

Spark用户讨论markmail.org/message/…

这里,我们需要对“停止从Kafka中接收”问题做一些解释。当下,当你通过ssc.start()开启你的streams应用程序后,处理会开始并一直进行,即使是输入数据源(比如Kafka)变得不可用。也就是说,流不能检测出是否与上游数据源失去链接,因此也不会对丢失做出任何反应,举个例子来说也就是重连或者结束执行。类似的,如果你丢失这个数据源的一个receiver,那么你的流应用程序可能就会生成一些空的RDDs。

这是一个非常糟糕的情况。最简单也是最粗糙的方法就是,在与上游数据源断开连接或者一个receiver失败时,重启你的流应用程 序。但是,这种解决方案可能并不会产生实际效果,即使你的应用程序需要将Kafka配置选项auto.offset.reset设置到最小——因为Spark Streaming中一些已知的bug,可能导致你的流应用程序发生一些你意想不到的问题,在下文Spark Streaming中常见问题一节我们将详细的进行介绍。

选择2:控制每个input DStream上小发着线程的数量

在这个例子中,我们将建立一个单一的input DStream,它将运行3个消费者线程——在同一个receiver/task,因此是在同一个core/machine/NIC上对Kafka topic“zerg.hydra”进行读取。

KafkaUtils.createStream方法被重载,因此这里有一些不同方法的特征。在这里,我们会选择Scala派生以获得最佳的控制。

结合选项1和选项2

下面是一个更完整的示例,结合了上述两种技术:

我们建立了5个input DStreams,它们每个都会运行一个消费者线程。如果“zerg.hydra”topic拥有5个分区(或者更少),那么这将是进行并行读取的最佳途径,如果你在意系统最大吞吐量的话。

Spark Streaming中的并行Downstream处理

在之前的章节中,我们覆盖了从Kafka的并行化读取,那么我们就可以在Spark中进行并行化处理。那么这里,你必须弄清楚Spark本身是如何进行并行化处理的。类似Kafka,Spark将parallelism设置的与(RDD)分区数量有关,通过在每个RDD分区上运行task进行。在有些文档中,分区仍然被称为“slices”。

在任何Spark应用程序中,一旦某个Spark Streaming应用程序接收到输入数据,其他处理都与非streaming应用程序相同。也就是说,与普通的Spark数据流应用程序一样,在Spark Streaming应用程序中,你将使用相同的工具和模式。更多详情可见Level of Parallelism in Data Processing文档。

因此,我们同样将获得两个控制手段:

1. input DStreams的数量,也就是说,我们在之前章节中read parallelism的数量作为结果。这是我们的立足点,这样一来,我们在下一个步骤中既可以保持原样,也可以进行修改。

2. DStream转化的重分配。这里将获得一个全新的DStream,其parallelism等级可能增加、减少,或者保持原样。在DStream中每个返回的RDD都有指定的N个分区。DStream由一系列的RDD组成,DStream.repartition则是通过RDD.repartition实现。接下来将对RDD中的所有数据做随机的reshuffles,然后建立或多或少的分区,并进行平衡。同时,数据会在所有网络中进行shuffles。换句话说,DStream.repartition非常类似Storm中的shuffle grouping。

因此,repartition是从processing parallelism解耦read parallelism的主要途径。在这里,我们可以设置processing tasks的数量,也就是说设置处理过程中所有core的数量。间接上,我们同样设置了投入machines/NICs的数量。

一个DStream转换相关是union。这个方法同样在StreamingContext中,它将从多个DStream中返回一个统一的DStream,它将拥有相同的类型和滑动时间。通常情况下,你更愿意用StreamingContext的派生。一个union将返回一个由Union RDD支撑的UnionDStream。Union RDD由RDDs统一后的所有分区组成,也就是说,如果10个分区都联合了3个RDDs,那么你的联合RDD实例将包含30个分区。换句话说,union会将多个DStreams压缩到一个DStreams或者RDD中,但是需要注意的是,这里的parallelism并不会发生改变。你是否使用union依赖于你的用例是否需要从所有Kafka分区进行“in one place”信息获取决定,因此这里大部分都是基于语义需求决定。举个例子,当你需要执行一个不用元素上的(全局)计数。

注意:RDDs是无序的。因此,当你union RDDs时,那么结果RDD同样不会拥有一个很好的序列。如果你需要在RDD中进行sort。

你的用例将决定需要使用的方法,以及你需要使用哪个。如果你的用例是CPU密集型的,你希望对zerg.hydra topic进行5 read parallelism读取。也就是说,每个消费者进程使用5个receiver,但是却可以将processing parallelism提升到20。

在下一节中,我将把所有部分结合到一起,并且联合实际数据处理进行讲解。

写入到Kafka

写入到Kafka需要从foreachRDD输出操作进行:

通用的输出操作者都包含了一个功能(函数),让每个RDD都由Stream生成。这个函数需要将每个RDD中的数据推送到一个外部系统,比如将RDD保存到文件,或者通过网络将它写入到一个数据库。需要注意的是,这里的功能函数将在驱动中执行,同时其中通常会伴随RDD行为,它将会促使流RDDs的计算。

注意:重提“功能函数是在驱动中执行”,也就是Kafka生产者将从驱动中进行,也就是说“功能函数是在驱动中进行评估”。当你使用foreachRDD从驱动中读取Design Patterns时,实际过程将变得更加清晰。

在这里,建议大家去阅读Spark文档中的Design Patterns for using foreachRDD一节,它将详细讲解使用foreachRDD读外部系统中的一些常用推荐模式,以及经常出现的一些陷阱。

在我们这个例子里,我们将按照推荐来重用Kafka生产者实例,通过生产者池跨多个RDDs/batches。我通过Apache Commons Pool实现了这样一个工具,已经上传到GitHub。这个生产者池本身通过broadcast variable提供给tasks。

最终结果看起来如下:

更多的细节和解释可以点击阅读原文看所有源代码。

就我自己而言,我非常喜欢Spark Streaming代码的简洁和表述。在Bobby Evans和Tom Graves讲话中没有提到的是,Storm中这个功能的等价代码是非常繁琐和低等级的:kafka-storm-starter中的KafkaStormSpec会运行一个Stormtopology来执行相同的计算。同时,规范文件本身只有非常少的代码,当然是除下说明语言,它们能更好的帮助理解;同时,需要注意的是,在Storm的Java API中,你不能使用上文Spark Streaming示例中所使用的匿名函数,比如map和foreach步骤。取而代之的是,你必须编写完整的类来获得相同的功能,你可以查看AvroDecoderBolt。这感觉是将Spark的API转换到Java,在这里使用匿名函数是非常痛苦的。

最后,我同样也非常喜欢Spark的说明文档,它非常适合初学者查看,甚至还包含了一些进阶使用。关于Kafka整合到Spark,上文已经基本介绍完成,但是我们仍然需要浏览mailing list和深挖源代码。这里,我不得不说,维护帮助文档的同学做的实在是太棒了。

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2015-01-05,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CSDN技术头条 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
大数据
全栈大数据产品,面向海量数据场景,帮助您 “智理无数,心中有数”!
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档