前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >基于OpenGL ES的深度学习框架编写

基于OpenGL ES的深度学习框架编写

作者头像
CSDN技术头条
发布2018-02-12 17:24:50
2.5K0
发布2018-02-12 17:24:50
举报
文章被收录于专栏:CSDN技术头条CSDN技术头条

背景与工程定位

背景

项目组基于深度学习实现了视频风格化和人像抠图的功能,但这是在PC/服务端上跑的,现在需要移植到移动端,因此需要一个移动端的深度学习的计算框架。

同类型的库

  • caffe-Android-lib 目前应该是最便于集成使用的深度学习框架库。
  • tensorflow和mxnet据说也有对应的android库,因时间原因暂未测试
  • CNNdroid,网址https://zhuanlan.zhihu.com/p/25259452,这个是用

renderscript 作优化的深度学习框架,不过就代码实现和实际测试结果来看,性能一般。

工程定位

实现可实时、体积小、通用的深度学习预测框架。

可实时

跟PC或服务器不同,移动设备上的GPU可不一定有CPU强悍(多线程+neon/vfp),但在需要实时计算的场景(主要是相机预览和视频播放),往往都是基于OpenGL渲染环境的。

实时的情况下,深度学习框架的输入和输出都在GPU端,使用CPU进行计算往往需要拷贝图像出来,算好后再传到GPU端,因此基于GPU实现的深度学习的库能持平CPU版本的效率就有足够优势了。

比如实时抠人像这个case:

对每一帧相机预览产生的数据,系统将其映射为opengl 的一个external texture,然后需要 计算出一个 mask texture,与原先的texture作混合,显示出来。如果mask texture 的计算在cpu上进行,则需要每帧先把 graphicbuffer 的数据拷贝出来,计算出mask后上传到 mask texture 去,产生一来一回两次额外拷贝。

通用

本工程需要支持 caffe 产出的模型文件,支持常见的网络如lenet、ResNet等等。这个工作量包括编写相应层的算子,设计网络结构,解析caffe模型的参数等。

所幸的是,目前在移动端做好深度学习的预测就足够了,相比于兼顾训练的结构至少省去2/3的工作量。

工程实现

方案选型

GPU加速的API

使用GPU加速有如下一些方案:

CUDA、OpenCL、OpenGL(ES)、RenderScript、Metal CUDA只适用到NVIDIA的GPU,Metal只适用于apple系列,这两个对android设备而言基本不用考虑。

对于OpenCL,虽然有不少移动GPU已经支持,比如 Arm 的 mali 系列(T628之后),且有相应的支持库。但是,一方面由于Android在系统层面上没有支持,没有相应的系统API,兼容性还是比较差,另一方面,OpenCL 操作完成后的内存传到OpenGL还是需要同步一下,会影响效率。

RenderScript 这个坑比较多,文档极少,而且会有跟OpenCL一样的需要跟OpenGL同步的问题,不做考虑。 最后就只剩下 OpenGL ES,为了开发方便,用 Computer shader 实现,尽管会有一定的兼容性牺牲(Android 5.1 及以上,GPU支持openGLES 3.1),但考虑到下面两点是值得的:

1. 走渲染管线去实现通用计算,编程复杂且容易出错,调优也很麻烦。有 computer shader之后,编程就跟opencl、metal类似,这些工作量可以大幅降低,大大加快开发。 2. 支持OpenGLES 3.1版本的GPU一般都是相对较新的,性能不会太差,能够实现加速的目的。

运算的分配

CNNdroid中仅用GPU加速卷积层的运算,其他还是由CPU+多线程执行。以前我们在早期作gpu加速的预研时,也有过类似的尝试,但是数据传输和同步的性能消耗远大于协同计算带来的性能提升。因此这个工程中,网络中的计算全部由GPU完成,避免数据在CPU和GPU之间反复传输或同步。

另外,GPU驱动在申请内存(分配纹理所需要内存空间)的时间消耗在移动设备端是不可忽略的,因此,不能在运算过程中临时创建纹理或其他Buffer,必须事先分配好。

优化注意点

1. 向量化运算

预测时,我们输入神经网络的数据可表示为 w∗h∗d的三维数据。我们将输入数据用一个RGBA32F格式的3D纹理存维,由于每一个像素有4个数值,得到的纹理大小是w∗h∗ceil(d4)。

对于卷积层和内积层,我们把参数存储为mat4的数组,然后其计算就完全是vec4级的向量化运算。

2. 合适的localsize设计

与OpenCL不一样,computer shader 必须手动指定 workgroup 的大小,并且指定运行的 workgroup 数量。这两组维度,都是越大越好。

local size 一般而言越大越好,但 computer shader 所需要的寄存器越多,local size 的最大值就越小,考虑到最耗时的卷积shader所能使用的local size 一般也就 64,保守起见都定为64(8乘8)。

不能对齐的情况在shader中处理,比如下面的代码:

3. 适当地合并/去除layer

如正则层可以直接和上一层合并(末尾加个max处理就行),dropout层可以直接丢弃。 合并可以提升性能(不过不会太多),但最重要的是减少了中间内存。

框架设计

分为两个子模块,引擎模块在客户端上运行,工具模块用来转换caffe的模型文件。

引擎模块

1. 数据层

Image 为一个RGBA32F格式的2D Array纹理,SSBO为一种vbo, 全称为GL_SHADER_STORAGE_BUFFER,用于存储自定义类型的数据(主要就是卷积层和内积层的参数)。

Program 为 着色器链接而成的 opengl program,NetInfo 由 proto 定义,用于规定网络结构。

在 shader 中,image 和 SSBO 示例如下:

2. 算子层

包括各类layer的实现,如卷积、正则、内积(全连接)、Softmax等。 每一个layer要负责申请自己的输出内存(image)。

3. 结构层

根据 NetInfo 的信息,创建各类算子并构成DAG(有向无环图),执行运算并输出结果。

下图是lenet的dag示例:

工具模块

一个结构转换器、参数初始化和拷贝工具。拷贝工具是比较容易出错的,因为卷积层和内积层的参数需要补零对齐及重排。

性能与效果

跟开源的caffe-android-lib对比:https://github.com/sh1r0/caffe-android-lib

库大小

  • caffe-android-lib 11M
  • DeeplearningOGL 440K

全自主开发的,毫无疑问要小很多很多。

运行效率

Oppo R9 (MT6755, GPU: Mali-T860)上的测试结果:

连续运行十次,去除第一次的结果(移动设备上一般都是动态调频的,第一次跑的时候CPU/GPU的频率还没调起来,会比较慢)。

Lenet 网络:

  • caffe-android-lib:5.0~5.2ms(线程设为4)
  • DeeplearningOGL:3.6-3.8 ms

较CPU版本(包含了neon与多线程优化)提升了 50%左右的效率,已经大大超出预期了,在GPU更好的机器上(如mate8上)表现会更佳。

相比于 CNNdroid 更是好很多了。

人像抠图的场景很流畅,且不需要隔帧计算。

本文来自CSDN博客:http://blog.csdn.net/jxt1234and2010/article/details/71056736

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2017-05-09,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 CSDN技术头条 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 背景
  • 同类型的库
  • 工程定位
    • 可实时
    • 通用
    • 方案选型
      • GPU加速的API
        • 运算的分配
          • 优化注意点
          • 框架设计
            • 引擎模块
              • 工具模块
              • 库大小
              • 运行效率
              相关产品与服务
              图像处理
              图像处理基于腾讯云深度学习等人工智能技术,提供综合性的图像优化处理服务,包括图像质量评估、图像清晰度增强、图像智能裁剪等。
              领券
              问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档