专栏 | 案例:电信用户分群精准画像的7个步骤

“每天一个数据”分析师新一期内容奉上,请享用~

转载请注明来自CDA数据分析师 否则小编将举报到底!

本期我们有幸采访到的嘉宾名叫兰锦池,2012年硕士毕业,概率论与数理统计专业,崇尚概率论和统计学解决问题的思想,喜爱折腾各种实际数据,愿意跟数据挖掘模型死磕。

现在他是一名资深数据挖掘工程师,主要负责用户行为分析和精准营销相关工作;曾做过某电信省公司的手机用户行为价值分群、手机终端升级概率预测模型、用户流失预警模型等。

在兰锦池看来,工作中最困难的还是数据源的采集和结构化数据的获取,比如曾经做用户的手机上网行为画像,需要采集手机上网日志数据,并转化为兴趣点数据。需要数据分析狮提出数据需求、采集规则、计算口径等非常详细的方案,期间还得与业务和数据采集部门深入合作。简而言之,就是,数据分析狮不仅仅是呆板的技术人员,而且能沟通协调、整合资源的多面手。

本期,他带来了一个电信用户分群案例,与大家分享。


1、业务问题背景

某省电信运营商e8套餐(宽带+固话)升级e9(宽带+固话+手机)的主要业务目标为针对e8客户加装电信C网号码并购买手机,升级为e9融合套餐或e9自主套餐用户。即,通过电信的自身的宽带客户资源,进行精准电话营销,促使用户购买手机,从而提升电信在手机市场的占有率。

2、数据理解:e8升e9的数据理解

规则项

数据理解结论

工作内容解释

数据源范围

- 内部数据

由于e8用户都是本网客户,内部已基本拥有较为全面的客户信息,因此数据源基本通过内部数据即可。

数据源可提供信息

- 68个字段,已较全面覆盖挖掘需求

内部数据目前已拥有客户属性信息、产品信息、通信行为信息和价值信息。

数据可用性

- 可用

宽表数据通过长期累积,各字段口径已基本完全确认并可用。

数据挖掘方向

- 预测客户购买概率- 探索客户需求偏好

针对e8客户进行加装C网手机的概率进行预测,对客户的营销优先级进行排序。探索不同客户群体的需求偏好,以确定营销过程中选择客户最感兴趣的需求点切入。

3、确定分析对象

本环节关键点:

缩小分析基础客户群范围,从表中238万宽带客户中筛选出24万符合业务目标的e8客户,作为数据挖掘的基础客户群

具体步骤:

常用的数据挖掘基础客户群筛选维度如下

  • 客户群筛选,如宽带客户、手机客户、固话客户
  • 套餐大类筛选:如e8、e9、乐享
  • 特定业务规则筛选:如活动对客户网龄、套餐档位的限定
  • 互斥协议等筛选:根据活动规则,对已有互斥协议的客户进行筛选

分析对象筛选流程:

以e8升e9为例,根据前期业务和数据理解,本次挖掘的基本目标客户为e8用户,且在同账户下无C网手机。

具体数据样本选取路径如下:

注,具体操作方法:

  • e8客户筛选操作:选择客户“套餐类型”字段为“e8”的客户
  • e8客户无C网手机筛选过程:将所有e8客户的ACC_ID字段与“CDMA单月宽表”进行关联,能关联出C网号码的即视为同账户下有C网手机。形成241243数据样本。

4、变量筛选

以e8升e9案例中变量处理为例,具体筛选流程如下:

  • 通过对67个字段明显无关字段初步筛选后获得18个主要字段。
  • 此后,需根据字段理解对有明显相关性的变量进行筛选合并,如下面表格中的红色字段,宽带上行流量、宽带下行流量和宽带总流量三个字段存在明显的关联关系,因此根据业务需求可直接只选择宽带总流量进行分析即可。
  • 对于不确定是否有相关性的部分字段,可通过SPSS中“输出”模块中的“统计量”节点进行相关性判断。通常分析相关性结果大于0.666以上可基本判断相关性较强。例如:宽带使用流量字段与其他字段进行关联性分析,发现与宽带使用时长存在较强的相关性,因此这两个个字段可选择其中一个作为输入变量即可。
  • 最终确定模型的10个主要输入变量。

5、决策树模型的建立

(1)选择模型输入变量

根据数据准备阶段字段筛选结果选择了9个字段作为模型输入变量。CHAID节点对应的目标变量和预测变量设置,见下截图。

(2)模型输出结果

运行CHAID决策树节点后,Modeler会根据样本数据和输入变量训练决策树模型。虽然输入了9个变量但是CHAID决策树节点训练的模型最终生成决策树所选择的变量只有5个,分别是宽带在网时长(PD_PROM_FEE)、固话通话时长(VO_MOU_FIX_AVG)、固话ARPU(MB_FIX_ARPU_AVG)、宽带在网时长(PD_BB_TENURE)、宽带流量(VO_BB_VOL)。可以看出,这5个变量在都是具有重要业务含义的字段,基本符合建模目标。

(3)决策树输出的初步结果

下图,是决策树模型输出的结果,树状结构末端的每个“叶子”,代表一个细分用户群体。这个决策树结果共有17个“叶子”节点。

6、模型调优

e8升级e9模型中,决策树模型验证调优流程如下:

初步结果判定:

决策树结果共有17个“叶子”节点,用户细分群体偏多,部分群体的规模小,占比不足5%,因此需要根据各叶子节点的特征,对决策树的“叶子”进行修剪合并。

比如,上图中的节点1(套餐档位<=68元的用户),这个节点中的类别“1”用户占比仅0.56%,较全样本的整体类别“1”占比0.786%较低,说明套餐档位<=68元的用户都是质量较差的部分,加装3G手机的可能性较低。从选取营销目标用户的角度,对这类用户不需要进行深入分析,因此可以把该节点下面的三层节点都剪裁合并。

模型的调整和优化—子模型的建立

如果认为决策树的某个子节点对应的决策树规则不符合业务逻辑,则可选择该决策树节点下的样本再建立一个子模型,从新选择新的变量。

比如,对上述决策树模型的结果,在套餐档位为80~98元且宽带在网时长13个月以上的样本分了四个子节点,但是这四个节点的类别“1”占比并没有递增或者递减的规律,这在业务逻辑上很难解释。因此可针对该条件(套餐档位为80~98元且宽带在网时长13个月以上)的样本数据,再单独建立一个决策树模型。

决策树子模型的建立可参见如下截图。首先,利用Modeler的样本选择节点,选择套餐档位为80~98元且宽带在网时长13个月以上的样本数据;然后,在决策树模型的节点选择输入变量时,不要选择宽带在网时长的字段,即调整输入变量;这样Modeler会根据新选择的样本和输入变量建立一个新的决策树模型(见下图)。这就建立了一个更具有业务解释性的决策树子模型。

7、模型结果解释

具体分群的数据结果如下:

根据三个主要判断分群有效的原则,选择提升倍数在1.3以上、客户群规模占比5%以上的群体作为主要目标客户,一共4个客户群。上述的群划分规则即建模变量。

通过决策树模型筛选出目标用户群后,需要进一步根据不同细分目标群体的消费行为特征来推测客户的主要业务需求。此时需要根据e8升e9的业务目标,选择主要的字段来刻画客户特征。通常对客户群各变量的均值来进行描述,具体如下:

因此,具体客户特征总结描述如下:

原文发布于微信公众号 - CDA数据分析师(cdacdacda)

原文发表时间:2015-11-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏xingoo, 一个梦想做发明家的程序员

白话推荐系统——从原理到实践,还有福利赠送!

之前流水账似的介绍过一篇机器学习入门的文章,大致介绍了如何学习以及机器学习的入门方法并提供了一些博主自己整理的比较有用的资源。这篇就尽量以白话解释并介绍机器学...

2136
来自专栏IT派

干货丨从TensorFlow到PyTorch:九大深度学习框架哪款最适合你?

现在的许多机器学习框架都可以在图像识别、手写识别、视频识别、语音识别、目标识别和自然语言处理等许多领域大展身手,但却并没有一个完美的深度神经网络能解决你的所有业...

3424
来自专栏磐创AI技术团队的专栏

热点 | 近期Github机器学习开源项目...

对于程序员来说,开源项目是十分有帮助的。希望你能从这篇文章中找到可以激发你灵感的有趣项目。最近磐创AI寻找“深大锦鲤”活动是2018年10月15日准时开奖哦~听...

2272
来自专栏PPV课数据科学社区

干货分享:数据可视分析中的知识产生模型

可视分析技术已经发展了近十年。在这些年间,人们研究了大量的可视分析方法和案例,发表了不少研究论文。然而,对于一些基本问题,人们依然没有明确的答案。例如,一个基本...

4076
来自专栏机器之心

人工智能与自然语言处理概述:AI三大阶段、NLP关键应用领域

选自xenonstack 机器之心编译 参与:黄小天、李亚洲 近日,Xenonstack 上推出了一篇名为《Overview of Artificial In...

4768
来自专栏机器之心

资源 | 从TensorFlow到PyTorch:九大深度学习框架哪款最适合你?

选自CIO 作者:Mitch De Felice 机器之心编译 参与:Jane W、黄玉胜 开源的深度学习神经网络正步入成熟,而现在有许多框架具备为个性化方案提...

4417
来自专栏AI科技大本营的专栏

回顾2016深度学习十大框架

我喜欢参加在西班牙马德里举办的机器学习见面会,也算是西班牙马德里TensorFlow小组和机器学习(Machine Learning)小组的常客,在自动无人驾驶...

39211
来自专栏FD的专栏

人工智能与自然语言处理概述:AI三大阶段、NLP关键应用领域

AI 指代「人工智能」,是让机器能够像人类一样完成智能任务的技术。AI 使用智能完成自动化任务。

1093
来自专栏PaddlePaddle

零基础上手深度学习的捷径,居然真的有?

EasyDL全称为Easy DeepLearning,是一款定制模型训练和服务的技术平台。使用时,根据页面文字提示进行四步简单操作,最快10分钟小伙伴们即可训练...

911
来自专栏玉树芝兰

如何快速梳理领域文献

给研究生上课的时候,有一次作业是让他们就某一个具体领域做文献分析。这个作业基本上就没有很完满而愉快地完成过。

1562

扫码关注云+社区

领取腾讯云代金券