前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【数据挖掘】主题模型——LDA比较通俗的介绍

【数据挖掘】主题模型——LDA比较通俗的介绍

作者头像
陆勤_数据人网
发布2018-02-27 10:21:56
3.8K0
发布2018-02-27 10:21:56
举报

一、主题模型

要介绍LDA,首先说说主题模型(Topic Model)的概念。主题模型是一种生成式模型,而且是通过主题来生成的。就是说,我们认为一篇文档的每个词都是通过以一定概率选择了某个主题,并从这个主题中以一定概率选择某个词语这样一个过程得到的。

何谓“主题”呢?其含义就是诸如一篇文章、一段话、一个句子所表达的中心思想,只不过不同的是,从统计模型的角度来说,我们是用一个特定的词频分布来刻画主题的,不同主题的词相同,但是词频不同。一篇文档一般有多个主题,这样,我们就可以认为,一篇文档是有多个主题来生成的。

举例:如果我们要生成一篇文档,它里面的每个词语出现的概率为:

这个概率公式可以用矩阵表示:

其中”文档-词语”矩阵表示每个文档中每个单词的词频,即出现的概率;”主题-词语”矩阵表示每个主题中每个单词的出现概率;”文档-主题”矩阵表示每个文档中每个主题出现的概率。

给定一系列文档,通过对文档进行分词,计算各个文档中每个单词的词频就可以得到左边这边”文档-词语”矩阵。主题模型就是通过左边这个矩阵进行训练,学习出右边两个矩阵。

主题模型有两种:pLSA(ProbabilisticLatent Semantic Analysis)和LDA(Latent Dirichlet Allocation),下面主要介绍LDA。

二、LDA介绍

如何生成M份包含N个单词的文档,LatentDirichlet Allocation这篇文章介绍了3方法:

方法一:unigram model

该模型使用下面方法生成1个文档:

For each ofthe N words w_n: Choose a word w_n ~ p(w);

其中N表示要生成的文档的单词的个数,w_n表示生成的第n个单词w,p(w)表示单词w的分布,可以通过语料进行统计学习得到,比如给一本书,统计各个单词在书中出现的概率。

这种方法通过训练语料获得一个单词的概率分布函数,然后根据这个概率分布函数每次生成一个单词,使用这个方法M次生成M个文档。其图模型如下图所示:

方法二:Mixture of unigram

unigram模型的方法的缺点就是生成的文本没有主题,过于简单,mixture of unigram方法对其进行了改进,该模型使用下面方法生成1个文档:

Choose a topicz ~ p(z);

For each ofthe N words w_n:

Choose a word w_n ~ p(w|z);

其中z表示一个主题,p(z)表示主题的概率分布,z通过p(z)按概率产生;N和w_n同上;p(w|z)表示给定z时w的分布,可以看成一个k×V的矩阵,k为主题的个数,V为单词的个数,每行表示这个主题对应的单词的概率分布,即主题z所包含的各个单词的概率,通过这个概率分布按一定概率生成每个单词。

这种方法首先选选定一个主题z,主题z对应一个单词的概率分布p(w|z),每次按这个分布生成一个单词,使用M次这个方法生成M份不同的文档。其图模型如下图所示:

从上图可以看出,z在w所在的长方形外面,表示z生成一份N个单词的文档时主题z只生成一次,即只允许一个文档只有一个主题,这不太符合常规情况,通常一个文档可能包含多个主题。

方法三:LDA(Latent Dirichlet Allocation)

LDA方法使生成的文档可以包含多个主题,该模型使用下面方法生成1个文档:

Chooseparameter θ ~ p(θ);

For each ofthe N words w_n:

Choose a topic z_n ~ p(z|θ);

Choose a word w_n ~ p(w|z);

其中θ是一个主题向量,向量的每一列表示每个主题在文档出现的概率,该向量为非负归一化向量;p(θ)是θ的分布,具体为Dirichlet分布,即分布的分布;N和w_n同上;z_n表示选择的主题,p(z|θ)表示给定θ时主题z的概率分布,具体为θ的值,即p(z=i|θ)= θ_i;p(w|z)同上。

这种方法首先选定一个主题向量θ,确定每个主题被选择的概率。然后在生成每个单词的时候,从主题分布向量θ中选择一个主题z,按主题z的单词概率分布生成一个单词。其图模型如下图所示:

从上图可知LDA的联合概率为:

把上面的式子对应到图上,可以大致按下图理解:

从上图可以看出,LDA的三个表示层被三种颜色表示出来:

1. corpus-level(红色):α和β表示语料级别的参数,也就是每个文档都一样,因此生成过程只采样一次。

2.document-level(橙色):θ是文档级别的变量,每个文档对应一个θ,也就是每个文档产生各个主题z的概率是不同的,所有生成每个文档采样一次θ。

3. word-level(绿色):z和w都是单词级别变量,z由θ生成,w由z和β共同生成,一个 单词w对应一个主题z。

通过上面对LDA生成模型的讨论,可以知道LDA模型主要是从给定的输入语料中学习训练两个控制参数α和β,学习出了这两个控制参数就确定了模型,便可以用来生成文档。其中α和β分别对应以下各个信息:

α:分布p(θ)需要一个向量参数,即Dirichlet分布的参数,用于生成一个主题θ向量;

β:各个主题对应的单词概率分布矩阵p(w|z)。

把w当做观察变量,θ和z当做隐藏变量,就可以通过EM算法学习出α和β,求解过程中遇到后验概率p(θ,z|w)无法直接求解,需要找一个似然函数下界来近似求解,原文使用基于分解(factorization)假设的变分法(varialtional inference)进行计算,用到了EM算法。每次E-step输入α和β,计算似然函数,M-step最大化这个似然函数,算出α和β,不断迭代直到收敛。

参考文献:David M. Blei, AndrewY. Ng, Michael I. Jordan, LatentDirichlet Allocation, Journal of Machine Learning Research 3, p993-1022,2003

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2015-10-23,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据科学与人工智能 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档