前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >【Python环境】Python分类现实世界的数据

【Python环境】Python分类现实世界的数据

作者头像
陆勤_数据人网
发布2018-02-27 12:11:18
9310
发布2018-02-27 12:11:18
举报

引入

一个机器可以根据照片来辨别鲜花的品种吗?在机器学习角度,这其实是一个分类问题,即机器根据不同品种鲜花的数据进行学习,使其可以对未标记的测试图片数据进行分类。这一小节,我们还是从scikit-learn出发,理解基本的分类原则,多动手实践。

Iris数据集

Iris flower数据集是1936年由Sir Ronald Fisher引入的经典多维数据集,可以作为判别分析(discriminant analysis)的样本。该数据集包含Iris花的三个品种(Iris setosa, Iris virginica and Iris versicolor)各50个样本,每个样本还有4个特征参数(分别是萼片<sepals>的长宽和花瓣<petals>的长 宽,以厘米为单位),Fisher利用这个数据集开发了一个线性判别模型来辨别花朵的品种。基于Fisher的线性判别模型,该数据集成为了机器学习中各 种分类技术的典型实验案例。

现在我们要解决的分类问题是,当我们看到一个新的iris花朵,我们能否根据以上测量参数成功预测新iris花朵的品种。

我们利用给定标签的数据,设计一种规则进而应用到其他样本中做预测,这是基本的监督问题(分类问题)。

由于iris数据集样本量和维度都很小,所以可以方便进行可视化和操作。

数据的可视化(visualization)

scikit-learn自带有一些经典的数据集,比如用于分类的iris和digits数据集,还有用于回归分析的boston house prices数据集。可以通过下面的方式载入数据:

from sklearn import datasets
iris = datasets.load_iris()
digits = datasets.load_digits()

该数据集是一种字典结构,数据存储在.data成员中,输出标签存储在.target成员中。

画出任意两维的数据散点图

可以用下面的方式画出任意两个维度的散点图,这里以第一维sepal length和第二维数据sepal width为例:

from sklearn import datasets
import matplotlib.pyplot as plt
import numpy as np
iris = datasets.load_iris()
irisFeatures = iris["data"]
irisFeaturesName = iris["feature_names"]
irisLabels = iris["target"]
def scatter_plot(dim1, dim2):
    for t,marker,color in zip(xrange(3),">ox","rgb"):
           # zip()接受任意多个序列参数,返回一个元组tuple列表
        # 用不同的标记和颜色画出每种品种iris花朵的前两维数据
        # We plot each class on its own to get different colored markers
        plt.scatter(irisFeatures[irisLabels == t,dim1],
        irisFeatures[irisLabels == t,dim2],marker=marker,c=color)
    dim_meaning = {0:'setal length',1:'setal width',2:'petal length',3:'petal width'}

plt.xlabel(dim_meaning.get(dim1))plt.ylabel(dim_meaning.get(dim2))
plt.subplot(231)
scatter_plot(0,1)
plt.subplot(232)
scatter_plot(0,2)
plt.subplot(233)
scatter_plot(0,3)
plt.subplot(234)
scatter_plot(1,2)
plt.subplot(235)
scatter_plot(1,3)
plt.subplot(236)
scatter_plot(2,3)
plt.show()

效果如图:

构建分类模型

根据某一维度的阈值进行分类

如果我们的目标是区别这三种花朵,我们可以做一些假设。比如花瓣的长度(petal length)好像将Iris Setosa品种与其它两种花朵区分开来。我们可以以此来写一段小代码看看这个属性的边界是什么:

petalLength = irisFeatures[:,2] #select the third column,since the features is 150*4

isSetosa = (irisLabels == 0) #label 0 means iris Setosa

maxSetosaPlength = petalLength[isSetosa].max()

minNonSetosaPlength = petalLength[~isSetosa].min()

print ('Maximum of setosa:{0} '.format(maxSetosaPlength))

print ('Minimum of others:{0} '.format(minNonSetosaPlength))

'''
显示结果是:
Maximum of setosa:1.9 
Minimum of others:3.0 
'''

我们根据实验结果可以建立一个简单的分类模型,如果花瓣长度小于2,就是Iris Setosa花朵,否则就是其他两种花朵。

这个模型的结构非常简单,是由数据的一个维度阈值来确定的。我们通过实验确定这个维度的最佳阈值。

以上的例子将Iris Setosa花朵和其他两种花朵很容易的分开了,然而我们不能立即确定Iris Virginica花朵和Iris Versicolor花朵的最佳阈值,我们甚至发现,我们无法根据某一维度的阈值将这两种类别很完美的分开。

比较准确率来得到阈值

我们先选出非Setosa的花朵。

irisFeatures = irisFeatures[~isSetosa]

labels = irisLabels[~isSetosa]

isVirginica = (labels == 2)    #label 2 means iris virginica

这里我们非常依赖NumPy对于数组的操作,isSetosa是一个Boolean值数组,我们可以用它来选择出非Setosa的花朵。最后,我 们还构造了一个新的Boolean数组,isVirginica。接下来,我们对每一维度的特征写一个循环小程序,然后看一下哪一个阈值能得到更好的准确 率。

# search the threshold between virginica and versicoloririsFeatures = irisFeatures[~isSetosa]

labels = irisLabels[~isSetosa]

isVirginica = (labels == 2)	#label 2 means iris virginica

bestAccuracy = -1.0

for fi in xrange(irisFeatures.shape[1]):

thresh = irisFeatures[:,fi].copy()

thresh.sort()

for t in thresh:

pred = (irisFeatures[:,fi] > t)

acc = (pred == isVirginica).mean()

if acc > bestAccuracy:bestAccuracy = acc;

bestFeatureIndex = fi;

bestThreshold = t;

print 'Best Accuracy:\t\t',bestAccuracy

print 'Best Feature Index:\t',bestFeatureIndex

print 'Best Threshold:\t\t',bestThreshold'''
最终结果:
Best Accuracy:		0.94
Best Feature Index:	3
Best Threshold:		1.6
'''

这里我们首先对每一维度进行排序,然后从该维度中取出任一值作为阈值的一个假设,再计算这个假设的Boolean序列和实际的标签Boolean 序列的一致情况,求平均,即得到了准确率。经过所有的循环,最终得到的阈值和所对应的维度。最后,我们得到了最佳模型针对第四维花瓣的宽度petal width,我们就可以得到这个决策边界decision boundary。

评估模型——交叉检验

上面,我们得到了一个简单的模型,并且针对训练数据实现了94%的正确率,但这个模型参数可能过于优化了。

我们需要的是评估模型针对新数据的泛化能力,所以我们需要保留一部分数据,进行更加严格的评估,而不是用训练数据做测试数据。为此,我们会保留一部分数据进行交叉检验。

这样我们就会得到训练误差和测试误差,当复杂的模型下,可能训练的准确率是100%,但是测试时效果可能只是比随机猜测好一点。

交叉检验

在许多实际应用中,数据是不充足的。为了选择更好的模型,可以采用交叉检验方法。 交叉检验的基本想法是重复地使用数据;把给定数据进行切分,将切分的数据集组合为训练集和测试集,在此基础上反复地进行训练、测试以及模型选择。

S-fold交叉检验

应用最多的是S折交叉检验(S-fold cross validation),方法如下:首先随机地将已给数据切分为S个互不相交的大小相同的子集;然后利用S-1个子集的数据训练模型,利用余下的子集测试 模型;将这一过程对可能的S种选择重复进行;最后选出S次评测中平均测试误差最小的模型。

如上图,我们将数据集分成5部分,即5-fold交叉检验。接下来,我们可以对每一个fold生成一个模型,留出20%的数据进行检验。

leave-one-out交叉检验方法

留一交叉检验(leave-one-out cross validation)是S折交叉检验的特殊情形,是S为给定数据集的容量时情形。我们可以从训练数据中挑选一个样本,然后拿其他训练数据得到模型,最后看该模型是否能将这个挑出来的样本正确的分类。

def learn_model(features,labels):

bestAccuracy = -1.0

for fi in xrange(features.shape[1]):

thresh = features[:,fi].copy()

thresh.sort()

for t in thresh:

pred = (features[:,fi] > t)

acc = (pred == labels).mean()

if acc > bestAccuracy:bestAccuracy = acc;

bestFeatureIndex = fi;

bestThreshold = t;

'''
print 'Best Accuracy:\t\t',bestAccuracy
print 'Best Feature Index:\t',bestFeatureIndex
print 'Best Threshold:\t\t',bestThreshold
'''

return {'dim':bestFeatureIndex, 'thresh':bestThreshold, 'accuracy':bestAccuracy}

def apply_model(features,labels,model):

prediction = (features[:,model['dim']] > model['thresh'])

return prediction
 
#-----------cross validation-------------

error = 0.0

for ei in range(len(irisFeatures)):# select all but the one at position 'ei':

training = np.ones(len(irisFeatures), bool)

training[ei] = False

testing = ~training
model = learn_model(irisFeatures[training], isVirginica[training])

predictions = apply_model(irisFeatures[testing],
  isVirginica[testing], model)error += np.sum(predictions != isVirginica[testing])

上面的程序,我们用所有的样本对一系列的模型进行了测试,最终的估计说明了模型的泛化能力。

小结

对于上面对数据集进行划分时,我们需要注意平衡分配数据。如果对于一个子集,所有的数据都来自一个类别,则结果没有代表性。基于以上的讨论,我们利用一个简单的模型来训练,交叉检验过程给出了这个模型泛化能力的估计。

参考文献

Wiki:Iris flower data set

Building Machine Learning Systems with Python

转载请注明作者Jason Ding及其出处

Github主页(http://jasonding1354.github.io/)

CSDN博客(http://blog.csdn.net/jasonding1354)

简书主页(http://www.jianshu.com/users/2bd9b48f6ea8/latest_articles)

文章出处:JasonDing的博客

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2015-11-10,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 数据科学与人工智能 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
目录
  • 引入
  • Iris数据集
  • 数据的可视化(visualization)
    • 画出任意两维的数据散点图
    • 构建分类模型
      • 根据某一维度的阈值进行分类
        • 比较准确率来得到阈值
        • 评估模型——交叉检验
          • 交叉检验
            • S-fold交叉检验
              • leave-one-out交叉检验方法
                • 小结
                • 参考文献
                相关产品与服务
                数据保险箱
                数据保险箱(Cloud Data Coffer Service,CDCS)为您提供更高安全系数的企业核心数据存储服务。您可以通过自定义过期天数的方法删除数据,避免误删带来的损害,还可以将数据跨地域存储,防止一些不可抗因素导致的数据丢失。数据保险箱支持通过控制台、API 等多样化方式快速简单接入,实现海量数据的存储管理。您可以使用数据保险箱对文件数据进行上传、下载,最终实现数据的安全存储和提取。
                领券
                问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档