专栏首页数据科学与人工智能【数据科学家】九个成为数据科学家的必备技能

【数据科学家】九个成为数据科学家的必备技能

本文详细列举了从雇主角度看来,数据科学家加强自身市场竞争力所必备的9个数据科学技能。

过去一年中人们对数据科学的兴趣骤然增长。Nate Silver这个名字已经家喻户晓,所有公司都在寻找独角兽,很多不同学科的专业人才都开始关注这份薪水丰厚的职业,并将其当作自己可能的职业选择。

在Burtch Works开展招聘工作时,我们与很多想要在数据科学这一成长性领域有所发展的分析学专家探讨过,对具体的实施方案提出了疑问。我从招聘者的角度列出了在数据科学方面对成功十分关键,并且是招聘经理首先考虑的一些技术类与非技术类技能。

各公司在技能与工具的价值评判上都不尽相同,因此这个列表绝对谈不上详尽,不过在这些领域有过经验的人会在数据科学上占有更大的优势。

技术技能:分析学

1

教育

数据科学家受教育程度都很高,其中88%至少拥有硕士学位,46%有博士学位。虽然有一些名人特例,不过通常来说成为一名数据科学家需要扎实的教育背景,才能掌握所需的深度知识。最常见的研究领域包括数学与统计学(32%),其次是计算机科学(19%)以及工程学(16%)。

2

SAS软件与/或R语言

对其中至少一种分析工具有深入的了解,一般对数据科学来说R语言更好一些。

技术能力:计算机科学

3

语言要求

都是公司在招聘数据科学类角色时最常提出的语言要求。

4

Hadoop平台

尽管不是总有这个需求,不过在很多情况下掌握它的人优势更大。熟悉Hive或Pig也是很有利的卖点。熟悉类似Amazon S3这样的云工具也会很有优势。

5

SQL数据库/编程

尽管NoSQL和Hadoop已经成为了数据科学很大的组成部分之一,招聘者还是希望能够找到可以编写与执行SQL复杂查询的候选人。

6

非结构化数据

数据科学家能够处理非结构化数据这一点非常重要,无论这些数据是来自社交媒体、视频源或者音频的。

非技术类技能

7

求知欲

毫无疑问最近到处都能看到这个词,尤其是在与数据科学家关联时。Frank Lo在几个月前的博文中描述了这个词的含义,并且讨论了其他必须的“软技能”。

8

商业智慧

想要成为数据科学家,需要充分了解自己工作的行业,并且知道公司想要解决的商业问题是哪些。能够根据数据科学分辨出解决哪些问题对公司来说更为重要,并且能够找出利用数据的新办法,这些是非常关键的。

9

通用技能

寻找优秀数据科学家的公司想要的是这样的人材:能够清楚顺畅地将自己的技术发现转化为非技术团队(比如市场部或者销售部)能够使用的内容。数据科学家必须能得出可用以决策的量化insight,同时了解非技术团队的需求,可以恰当地进行沟通以传达数据。想要了解定量专家在沟通技巧方面的更多信息,请参见我们近期的调查。

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

一般接下来的问题都是:“怎样能够获得这些技能呢?”网上有很多资源,不过笔者不希望让读者产生这样的错觉——成为数据科学家非常简单,上几节MOOCs就够了。除非你有扎实的定量经验,否则成为数据科学家之路还是颇有挑战的——但也并非不可能。

不过只要你确实对数据有兴趣、有激情,并打算将生命投入到相关的学习上,那么就不要让经验背景成为你追求数据科学生涯的阻碍。下面是我们觉得有用的一些资源:

1

高等学位——为了满足目前的需求,如雨后春笋般出现了更多的数据科学专业的项目,不过数学、统计学与计算机科学专业的项目也有很多。

2

MOOCs——Coursera、Udacity还有codeacademy都是不错的入门方式。

3

证书——KDnuggets编写了一个很长的列表清单。

4

Bootcamps——想要了解这种方式与学历项目或MOOCs的对比情况。

5

Kaggle——Kaggle上有数据科学竞赛,可以进行演练,用杂乱的真实世界数据来磨练技巧,解决真实的商业问题。雇主对Kaggle排名很重视,该排名可以被看作是相关的、经过亲身实践的项目工作。

6

LinkedIn小组——加入相关的小组,与数据科学社区的其他成员互动。

7

数据科学中心与KDnuggets——数据科学中心与KDnuggets都是保持与数据科学行业趋势前沿同步的优秀资源。

8

Burtch Works研究:关于数据科学家的薪金,如果想要了解更多信息与当前数据科学家人数统计的话,请下载我们的数据科学家薪金研究报告。

本文分享自微信公众号 - 数据科学与人工智能(DS_AI_shujuren)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2015-12-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • R语言学习 - 热图美化

    热图美化 上一期的绘图命令中,最后一行的操作抹去了之前设定的横轴标记的旋转,最后出来的图比较难看。 上次我们是这么写的 p <- p + xlab("samp...

    生信宝典
  • R语言学习 - 基础概念和矩阵操作

    R基本语法 获取帮助文档,查看命令或函数的使用方法、事例或适用范围 >>> ?command >>> ??command #深度搜索或模糊搜索此命令 >>> ...

    生信宝典
  • R语言学习 - 火山图

    火山图 火山图用于展示基因表达差异的分布,横轴为Log2 Fold Change,越偏离中心差异倍数越大;纵轴为(-1)*Log10 P_adjust,值越大差...

    生信宝典
  • 一篇文章告诉你,该学R还是Python

    对于想从事数据行业的人和数据工作者来说,是学习R还是Python,哪个工具更实用一直被大家争论。MartijnTheuwissen,DataCamp的教育专家详...

    CDA数据分析师
  • R语言学习 - 入门环境Rstudio

    R语言是比较常用的统计分析和绘图语言,拥有强大的统计库、绘图库和生信分析的Bioconductor库,是学习生物信息分析的必备语言之一。 Rstudio是编辑、...

    生信宝典
  • R语言学习 - 线图一步法

    线图 - 一步绘制 绘图时通常会碰到两个头疼的问题: 有时需要绘制很多的图,唯一的不同就是输入文件,其它都不需要修改。如果用R脚本,需要反复替换文件名,繁琐又容...

    生信宝典
  • R语言学习 - 富集分析泡泡图

    功能富集泡泡图 功能富集分析用来展示某一组基因(一般是单个样品上调或下调的基因)倾向参与哪些功能调控通路,对从整体理解变化了的基因的功能和潜在的调控意义具有指导...

    生信宝典
  • R语言学习 - 热图绘制 (heatmap)

    热图绘制 热图是做分析时常用的展示方式,简单、直观、清晰。可以用来显示基因在不同样品中表达的高低、表观修饰水平的高低等。任何一个数值矩阵都可以通过合适的方式用热...

    生信宝典
  • R语言学习 - 线图绘制

    线图 线图是反映趋势变化的一种方式,其输入数据一般也是一个矩阵。 单线图 假设有这么一个矩阵,第一列为转录起始位点及其上下游5 kb的区域,第二列为H3K27a...

    生信宝典
  • R语言学习 - 热图简化

    热图绘制 - pheatmap 绘制热图除了使用ggplot2,还可以有其它的包或函数,比如pheatmap::pheatmap (pheatmap包中的phe...

    生信宝典

扫码关注云+社区

领取腾讯云代金券