如何用深度学习来识别恶意软件

这是一个悲伤的故事,你可能经历过。

你又热又渴,看到桌子上有一瓶看起来像水的东西,来不及思考,揭开瓶盖喝了一大口。哦!漏!是油!

时间回到10秒前,我们重来一次。

这一次,额外的剧情是,你有一个看不惯的死敌和你一起住(这种情况在合租大军中很容易出现),他放了一瓶类似水的不明液体在桌上。

你又进来了,有累又热又渴,这一次你又端起来这瓶液体。这一次,你仔细分析了这种物质、形状和体积,你利用曾经的斗争经验再次判断,然后信心满满地做出了正确选择,完美地躲避了这场恶作剧——一瓶100%纯尿。

福音来了

如果我把这瓶看似是水的东西放置在传统的计算机视觉模块下分析,可以轻易识别出来它的成分。如果我手欠,非得手抓瓶子再来试一次,由于手指光荣出镜,传统的计算机视觉模块突然无法识别了。但是,如果我机智地把系统升级,加入人工智能模块,即所谓的深度学习技术,那么即使手指出镜,这瓶液体也可以被识别出来。

深度学习,就像人们所熟知的神经网络,受到大脑激励,不断增强学习识别物体的能力。以视觉识别为例,我们的大脑可以通过感官输入获得原始数据,同时进一步自主学习更高级别的特点。同样,在深度学习中,原始数据从深度神经网络中读取,凭此学习如何识别物体。

网络安全与图像识别相似,99%以上的新威胁和恶意软件实际上来源于此前已经存在的威胁和恶意软件的轻微“突变”。据说,即便是那1%的完全崭新的新威胁和恶意软件,也只是已存危机的大量“突变”而已。但是,尽管如此,即使是那些最前沿的,结合使用动态分析及传统机器学习的网络安全技术,也在检测大量新的恶意软件上遭遇重重困难,结果就是各类企业和组织极易遭受数据泄露、数据盗窃、恶意软件的扣押勒索和数据损坏。

两类老办法"然并卵"

我们先简单回顾下检测恶意软件方案的历史。

基于签名的解决方案是最古老的恶意软件检测形式,它们也被称为传统的解决方案。为了检测恶意软件,防病毒引擎将一个身份不明的代码块的内容与它的数据库中已知的恶意软件签名相比较。如果与已知恶意软件签名不匹配,那么就要靠手动调整的启发式算法来生成一个新的手工签名,然后更新发布。

用基于代码行为特点的启发式技术来识别恶意软件,产生了基于行为的解决方案。该恶意软件检测技术分析了恶意软件运行时的行为,而非针对恶意软件代码本身的硬编码。这种恶意软件检测方法的主要限制是,它仅能在恶意行动已经开始时发现恶意软件。结果,预防被推迟,有时甚至就是处理得太迟。

沙箱解决方案则是基于行为检测方法的发展。这些解决方案在一个虚拟的环境中执行恶意软件,以确定该文件是否恶意,而非检测运行时的行为指纹。

深度学习检测效果显著

使用人工智能侦测恶意软件的方法应运而生。

结合人工智能,打造更复杂的检测能力是网络安全解决方案演变之路上的最新一步。基于机器学习的恶意软件检测方法应用更详细的算法,根据手动工程的特点来判断一个文件的行为是恶意还是合法。然而,这个过程费时长,需要大量人力在文件分级过程中来确定技术参数、变量或特点,在文件分类过程中的重点。此外,恶意软件检测率仍然离100%识别很远。

人工智能的深度学习是机器学习的一个高级分支,也被称为“神经网络”,因为它与人类大脑的工作方式如出一辙。高级认知任务在人类大脑的外部皮层进行,而我们有数十亿个的神经元,这些神经元可以通过各种类型的数据进行学习。由于深度神经网络是机器学习中的第一算法单元,不需要手动工程特征,因此这是深度学习的伟大革命。不仅不需要手动工程,它们还可以通过对原始数据处理高层次特征进行处理,自主学习识别对象,这种方式和人类大脑通过感官输入处理原始原始数据进行学习十分相似。

来,看我的手势,完美!

在基于公开已知的数据库的端点的真正环境测试中,移动和APT恶意软件的检测率也十分显著。例如,基于深度学习的解决方案对大幅和轻微修改的恶意代码的检测识别率超过99%。这些结果与深度学习在其他领域的表现是一致的,如计算机视觉、语音识别和文本理解。

原文发布于微信公众号 - BestSDK(bestsdk)

原文发表时间:2016-09-21

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏思影科技

AJP:青少年饮酒后大脑发育轨迹发生改变

薛老师和他的猫推荐你关注思影科技 来自美国加州SRI国际健康科学中心、斯坦福大学等机构的研究人员联合在The American journal of psych...

32090
来自专栏AI科技大本营的专栏

AAAI 2018 杰出论文出炉,两位中国留学生共同获奖

编辑 | 周翔 作为人工智能的顶级会议,AAAI 2018 将于 2.2~2.7 在美国路易斯安那州的新奥尔良举行。然而,大会还没开始,获奖信息就已经在网上传播...

378140
来自专栏思影科技

脑电研究:睡眠中的婴儿大脑预测发育情况

传统观点认为九个月大之后的婴儿才能建立真正词汇的语义长程记忆,之前都处在呀呀学语的原词状态。来自德国柏林洪堡大学的学者Manuela Friedrich等人探索...

27440
来自专栏AI科技大本营的专栏

数据科学家线性规划入门指南

前言 生活之道在于优化。每个人拥有的资源和时间都是有限的,我们都想充分利用它们。从有效地利用个人时间到解决公司的供应链问题——处处都有用到优化。 优化还是一个有...

44470
来自专栏量子位

AI说:你的书法有咖喱味丨看字识国别

15520
来自专栏新智元

CVPR2019提交论文爆炸增长!有效论文数达5165,在线编辑器一度崩溃

今天,CVPR2019程序主席微软华刚在朋友圈透露,他和另外三位程序主席一起清点完CVPR2019的送审论文,发现:

12220
来自专栏大数据文摘

生命之圈:生物数据可视化的美丽新方法

307100
来自专栏机器人网

详解:无人机中超声波原理

近年来,消费类无人机越来越受欢迎,多用于拍摄震撼的片段、运送救援物资,多数无人机使用各种传感技术实现自主导航、碰撞检测。而你又是否知道,超声波传感尤其有助于无人...

11520
来自专栏PPV课数据科学社区

【笔记】CDA LEVEL II 数据建模师培训学习笔记(一)软件安装

? 写在前面:此笔记是PPV课学员张梦根据李玉玺老师在CDA LEVEL II 数据建模师培训的上课内容整理而成的。 ———————————–作者说明——...

360100
来自专栏思影科技

AJP事件相关电位研究:精神分裂症患者听觉感觉处理缺陷的临床和认知意义

来自塞拉利昂精神疾病研究、教育和临床中心,旧金山VA医疗保健系统,加州大学旧金山分校精神病学系和加州大学洛杉矶分校的心理学系以及精神病学系、生物行为科学系的研究...

35960

扫码关注云+社区

领取腾讯云代金券