深度离散哈希算法,可用于图像检索!

-免费加入AI技术专家社群>>

智能感知与计算研究中心李琦博士提出了一种深度离散哈希算法(discrete hashing algorithm),该算法认为学习到的二值编码应该也可以用于分类。实验结果表明该方法在基准数据集上的表现要好过目前最好的哈希方法,该成果已被 NIPS 2017接收,以下是相关成果介绍:

图 1 深度离散哈希编码示意图

由于网络上的图像和视频数据的快速增长,哈希算法(Hashing)在近几年间引起了极大的关注。由于其较低的计算成本和较高的存储效率,是图像搜索和视频搜索中最常使用的技术之一。一般来说,哈希算法可将高维数据编码为一组二进制代码,与此同时还能保持图像或视频的相似性。现有哈希算法可以大致分为两类:数据无关的方法和数据有关的方法。

近期有人提出了基于深度学习的哈希算法,它可以同时学习图像表示和哈希编码(hash coding),取得了比传统哈希算法更好的结果。「CNNH」[19] 是早期将深层神经网络与哈希编码融合的工作之一,该工作包括两个阶段来学习图像特征表示和哈希编码。CNNH 的一个缺点是通过学习得到的图像特征表示不能及时反馈给哈希编码。为了克服 CNNH 的这一缺陷,「Network In Network Hashing/NINH」[8] 提出了基于三元组损失函数来表示图像的相似性。研究表明,图像特征表示和哈希编码可以在一个框架内相互促进。「DSRH」算法 [24] 通过保留多标签图像间的相似语义信息来学习哈希函数。近年来还提出了其他基于排序的深度哈希算法 [17,21]。除了基于三元组排序方法外,还有一些基于成对标签的深度哈希算法 [9,25]。

我们所做工作总结如下。「1」我们方法的最后一层输出直接限制为二进制编码。学习到的二进制编码既能保持图像之间的相似关系,同时又能和标签信息保持一致。据我们所知,该方法是第一个在统一框架下同时使用成对标签信息和分类信息学习哈希编码的方法。「2」为了减少量化误差,我们在优化过程中保留了哈希编码的离散化这一特性。此外,我们还提出了一种交替优化方法,即使用坐标下降法优化目标函数。「3」大量的实验结果表明,我们的方法在图像检索问题上,取得了比现最好方法更好的结果,从而验证了我们方法的有效性。

图 1:DSDH-A、DSDH-B、DSDH-C 和 DSDH 在 CIFAR-10 上得到的结果:「a」Hamming 半径为 2 的精度曲线;「b」不同数目最佳返回图像的精度曲线(不确定);「c」具有 48 位哈希编码的精度-召回曲线。

表 1:第一组实验设置下不同方法的 MAP。NUS-WIDE 数据集的 MAP 是根据返回的前 5,000 位邻近值计算的。DPSH * 表示重新运行 DPSH 作者提供的代码。

表 2:第二组实验设置下不同方法的 MAP。NUS-WIDE 数据集的 MAP 是根据返回的前 50,000 位邻近值计算的。DPSH * 表示重新运行 DPSH 作者提供的代码。

表 3:第一组实验设置下不同方法的 MAP。NUS-WIDE 数据集的 MAP 是根据返回的前 5,000 位邻近值计算的。

论文:Deep supervised discrete hashing

论文地址:https://arxiv.org/abs/1705.10999

摘要:随着网络上图像和视频数据的快速发展,近几年图像及视频检索也被广泛的研究。得益于深度学习的发展,深度哈希方法在图像检索方面也取得了一定的成果。然而,之前的深度哈希方法还是存在一些限制「例如,没有充分利用语义信息」。在本文中,我们提出了一种深度离散哈希算法(discrete hashing algorithm),该算法认为学习到的二值编码应该也可以用于分类。成对标签信息和分类信息在统一框架下用于学习哈希编码。我们将最后一层的输出直接限制为二进制编码,而这种做法在基于深度学习哈希算法中很少被研究。由于哈希编码的离散性质,我们使用交替优化方法来求解目标函数。实验结果表明,我们的方法在基准数据集上的表现要好过目前最好的哈希方法。

原文:https://mp.weixin.qq.com/s?__biz=MzIyNjY3MjQ5NA==&mid=2247484004&idx=1&sn=40e1540c2e7f6d9c188782f1694978d7&chksm=e86da865df1a2173cd448f58de6814be79c0e581de6ce77a9d40614acc286d25cd516f26f0f6&mpshare=1&scene=23&srcid=121503h4WOZRU48TnElVOGOO#rd

本文来自企鹅号 - AI讲堂媒体

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器学习算法与Python学习

必须了解的8种神经网络架构

机器学习已经在各个行业得到了大规模的广泛应用,并为提升业务流程的效率、提高生产率做出了极大的贡献。目前机器学习主要在以下方面应用: 模式识别:实际场景中的目标...

3355
来自专栏小詹同学

你不得不了解的8种神经网络结构!

中长文预警!文末附赠大量资源!切勿错过! 机器学习已经在各个行业得到了大规模的广泛应用,并为提升业务流程的效率、提高生产率做出了极大的贡献。目前机器学习主要在以...

4506
来自专栏云时之间

NLP系列学习:概率图模型简述

在之前的一段时间里,忙于周围的乱七八糟的事情,在更新了上一期之后自己也很久没有更新,自己也想,如果自己没有用一种良好的心态去回忆总结自己所学的知识,即使花费再多...

42811
来自专栏AI科技大本营的专栏

透析|卷积神经网络CNN究竟是怎样一步一步工作的?

译者 | zhwhong 当你听到说深度学习打破了某项新技术障碍,那么十有八九就会涉及到卷积神经网络。它们也被称作CNNs或着ConvNets,是深层神经网络领...

3409
来自专栏绿巨人专栏

强化学习读书笔记 - 00 - 术语和数学符号

41711
来自专栏PPV课数据科学社区

必须了解的8种神经网络架构

机器学习已经在各个行业得到了大规模的广泛应用,并为提升业务流程的效率、提高生产率做出了极大的贡献。目前机器学习主要在以下方面应用: 模式识别:实际场景中的目标...

3795
来自专栏大数据挖掘DT机器学习

【机器学习】迭代决策树GBRT

一、决策树模型组合 单决策树C4.5由于功能太简单,并且非常容易出现过拟合的现象,于是引申出了许多变种决策树,就是将单决策树进行模型组合,形成多决策...

3346
来自专栏目标检测和深度学习

你不得不了解的8种神经网络结构!

机器学习已经在各个行业得到了大规模的广泛应用,并为提升业务流程的效率、提高生产率做出了极大的贡献。目前机器学习主要在以下方面应用: 模式识别:实际场景中的目标、...

4128
来自专栏机器之心

NAACL2018 | 杰出论文:RNN作为识别器,判定加权语言一致性

选自arXiv 机器之心编译 参与:Pedro、刘晓坤 4月11日,NAACL 2018公布了四篇杰出论文,分别关注于词表征、语句映射、文本生成和RNN。机器之...

2815
来自专栏目标检测和深度学习

Hinton向量学院推出神经ODE:超越ResNet 4大性能优势

【导读】Hinton创建的向量学院的研究者提出了一类新的神经网络模型,神经常微分方程(Neural ODE),将神经网络与常微分方程结合在一起,用ODE来做预测...

2033

扫码关注云+社区

领取腾讯云代金券