Spark源码系列(七)Spark on yarn具体实现

本来不打算写的了,但是真的是闲来无事,整天看美剧也没啥意思。这一章打算讲一下Spark on yarn的实现,1.0.0里面已经是一个stable的版本了,可是1.0.1也出来了,离1.0.0发布才一个月的时间,更新太快了,节奏跟不上啊,这里仍旧是讲1.0.0的代码,所以各位朋友也不要再问我讲的是哪个版本,目前为止发布的文章都是基于1.0.0的代码。

在第一章《spark-submit提交作业过程》的时候,我们讲过Spark on yarn的在cluster模式下它的main class是org.apache.spark.deploy.yarn.Client。okay,这个就是我们的头号目标。

提交作业

找到main函数,里面调用了run方法,我们直接看run方法。

    val appId = runApp()
    monitorApplication(appId)
    System.exit(0)

运行App,跟踪App,最后退出。我们先看runApp吧。

  def runApp(): ApplicationId = {
    // 校验参数,内存不能小于384Mb,Executor的数量不能少于1个。
    validateArgs()
    // 这两个是父类的方法,初始化并且启动Client
    init(yarnConf)
    start()

    // 记录集群的信息(e.g, NodeManagers的数量,队列的信息).
    logClusterResourceDetails()

    // 准备提交请求到ResourcManager (specifically its ApplicationsManager (ASM)// Get a new client application.
    val newApp = super.createApplication()
    val newAppResponse = newApp.getNewApplicationResponse()
    val appId = newAppResponse.getApplicationId()
    // 检查集群的内存是否满足当前的作业需求
    verifyClusterResources(newAppResponse)

    // 准备资源和环境变量.
    //1.获得工作目录的具体地址: /.sparkStaging/appId/
    val appStagingDir = getAppStagingDir(appId)
  //2.创建工作目录,设置工作目录权限,上传运行时所需要的jar包
    val localResources = prepareLocalResources(appStagingDir)
    //3.设置运行时需要的环境变量
    val launchEnv = setupLaunchEnv(localResources, appStagingDir)
  //4.设置运行时JVM参数,设置SPARK_USE_CONC_INCR_GC为true的话,就使用CMS的垃圾回收机制
    val amContainer = createContainerLaunchContext(newAppResponse, localResources, launchEnv)

    // 设置application submission context. 
    val appContext = newApp.getApplicationSubmissionContext()
    appContext.setApplicationName(args.appName)
    appContext.setQueue(args.amQueue)
    appContext.setAMContainerSpec(amContainer)
    appContext.setApplicationType("SPARK")

    // 设置ApplicationMaster的内存,Resource是表示资源的类,目前有CPU和内存两种.
    val memoryResource = Records.newRecord(classOf[Resource]).asInstanceOf[Resource]
    memoryResource.setMemory(args.amMemory + YarnAllocationHandler.MEMORY_OVERHEAD)
    appContext.setResource(memoryResource)

    // 提交Application.
    submitApp(appContext)
    appId
  }

monitorApplication就不说了,不停的调用getApplicationReport方法获得最新的Report,然后调用getYarnApplicationState获取当前状态,如果状态为FINISHED、FAILED、KILLED就退出。

说到这里,顺便把跟yarn相关的参数也贴出来一下,大家一看就清楚了。

    while (!args.isEmpty) {
      args match {
        case ("--jar") :: value :: tail =>
          userJar = value
          args = tail

        case ("--class") :: value :: tail =>
          userClass = value
          args = tail

        case ("--args" | "--arg") :: value :: tail =>
          if (args(0) == "--args") {
            println("--args is deprecated. Use --arg instead.")
          }
          userArgsBuffer += value
          args = tail

        case ("--master-class" | "--am-class") :: value :: tail =>
          if (args(0) == "--master-class") {
            println("--master-class is deprecated. Use --am-class instead.")
          }
          amClass = value
          args = tail

        case ("--master-memory" | "--driver-memory") :: MemoryParam(value) :: tail =>
          if (args(0) == "--master-memory") {
            println("--master-memory is deprecated. Use --driver-memory instead.")
          }
          amMemory = value
          args = tail

        case ("--num-workers" | "--num-executors") :: IntParam(value) :: tail =>
          if (args(0) == "--num-workers") {
            println("--num-workers is deprecated. Use --num-executors instead.")
          }
          numExecutors = value
          args = tail

        case ("--worker-memory" | "--executor-memory") :: MemoryParam(value) :: tail =>
          if (args(0) == "--worker-memory") {
            println("--worker-memory is deprecated. Use --executor-memory instead.")
          }
          executorMemory = value
          args = tail

        case ("--worker-cores" | "--executor-cores") :: IntParam(value) :: tail =>
          if (args(0) == "--worker-cores") {
            println("--worker-cores is deprecated. Use --executor-cores instead.")
          }
          executorCores = value
          args = tail

        case ("--queue") :: value :: tail =>
          amQueue = value
          args = tail

        case ("--name") :: value :: tail =>
          appName = value
          args = tail

        case ("--addJars") :: value :: tail =>
          addJars = value
          args = tail

        case ("--files") :: value :: tail =>
          files = value
          args = tail

        case ("--archives") :: value :: tail =>
          archives = value
          args = tail

        case Nil =>
          if (userClass == null) {
            printUsageAndExit(1)
          }

        case _ =>
          printUsageAndExit(1, args)
      }
    }

ApplicationMaster

直接看run方法就可以了,main函数就干了那么一件事...

  def run() {
    // 设置本地目录,默认是先使用yarn的YARN_LOCAL_DIRS目录,再到LOCAL_DIRS
    System.setProperty("spark.local.dir", getLocalDirs())

    // set the web ui port to be ephemeral for yarn so we don't conflict with
    // other spark processes running on the same box
    System.setProperty("spark.ui.port", "0")

    // when running the AM, the Spark master is always "yarn-cluster"
    System.setProperty("spark.master", "yarn-cluster")

   // 设置优先级为30,和mapreduce的优先级一样。它比HDFS的优先级高,因为它的操作是清理该作业在hdfs上面的Staging目录
    ShutdownHookManager.get().addShutdownHook(new AppMasterShutdownHook(this), 30)

    appAttemptId = getApplicationAttemptId()
  // 通过yarn.resourcemanager.am.max-attempts来设置,默认是2
  // 目前发现它只在清理Staging目录的时候用
    isLastAMRetry = appAttemptId.getAttemptId() >= maxAppAttempts
    amClient = AMRMClient.createAMRMClient()
    amClient.init(yarnConf)
    amClient.start()

    // setup AmIpFilter for the SparkUI - do this before we start the UI
  //  方法的介绍说是yarn用来保护ui界面的,我感觉是设置ip代理的
    addAmIpFilter()
  //  注册ApplicationMaster到内部的列表里
    ApplicationMaster.register(this)

    // 安全认证相关的东西,默认是不开启的,省得给自己找事
    val securityMgr = new SecurityManager(sparkConf)

    // 启动driver程序 
    userThread = startUserClass()

    // 等待SparkContext被实例化,主要是等待spark.driver.port property被使用
  // 等待结束之后,实例化一个YarnAllocationHandler
    waitForSparkContextInitialized()

    // Do this after Spark master is up and SparkContext is created so that we can register UI Url.
  // 向yarn注册当前的ApplicationMaster, 这个时候isFinished不能为true,是true就说明程序失败了
    synchronized {
      if (!isFinished) {
        registerApplicationMaster()
        registered = true
      }
    }

    // 申请Container来启动Executor
    allocateExecutors()

    // 等待程序运行结束
    userThread.join()

    System.exit(0)
  }

run方法里面主要干了5项工作:

1、初始化工作

2、启动driver程序

3、注册ApplicationMaster

4、分配Executors

5、等待程序运行结束

我们重点看分配Executor方法。 

  private def allocateExecutors() {
    try {
      logInfo("Allocating " + args.numExecutors + " executors.")
      // 分host、rack、任意机器三种类型向ResourceManager提交ContainerRequest
    // 请求的Container数量可能大于需要的数量
      yarnAllocator.addResourceRequests(args.numExecutors)
      // Exits the loop if the user thread exits.
      while (yarnAllocator.getNumExecutorsRunning < args.numExecutors && userThread.isAlive) {
        if (yarnAllocator.getNumExecutorsFailed >= maxNumExecutorFailures) {
          finishApplicationMaster(FinalApplicationStatus.FAILED, "max number of executor failures reached")
        }
     // 把请求回来的资源进行分配,并释放掉多余的资源
        yarnAllocator.allocateResources()
        ApplicationMaster.incrementAllocatorLoop(1)
        Thread.sleep(100)
      }
    } finally {
      // In case of exceptions, etc - ensure that count is at least ALLOCATOR_LOOP_WAIT_COUNT,
      // so that the loop in ApplicationMaster#sparkContextInitialized() breaks.
      ApplicationMaster.incrementAllocatorLoop(ApplicationMaster.ALLOCATOR_LOOP_WAIT_COUNT)
    }
    logInfo("All executors have launched.")

    // 启动一个线程来状态报告
    if (userThread.isAlive) {
      // Ensure that progress is sent before YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS elapses.
      val timeoutInterval = yarnConf.getInt(YarnConfiguration.RM_AM_EXPIRY_INTERVAL_MS, 120000)

      // we want to be reasonably responsive without causing too many requests to RM.
      val schedulerInterval = sparkConf.getLong("spark.yarn.scheduler.heartbeat.interval-ms", 5000)

      // must be <= timeoutInterval / 2.
      val interval = math.min(timeoutInterval / 2, schedulerInterval)

      launchReporterThread(interval)
    }
  }

这里面我们只需要看addResourceRequests和allocateResources方法即可。

先说addResourceRequests方法,代码就不贴了。

Client向ResourceManager提交Container的请求,分三种类型:优先选择机器、同一个rack的机器、任意机器。

优先选择机器是在RDD里面的getPreferredLocations获得的机器位置,如果没有优先选择机器,也就没有同一个rack之说了,可以是任意机器。

下面我们接着看allocateResources方法。

  def allocateResources() {
    // We have already set the container request. Poll the ResourceManager for a response.
    // This doubles as a heartbeat if there are no pending container requests.
  // 之前已经提交过Container请求了,现在只需要获取response即可 
    val progressIndicator = 0.1f
    val allocateResponse = amClient.allocate(progressIndicator)

    val allocatedContainers = allocateResponse.getAllocatedContainers()
    if (allocatedContainers.size > 0) {
      var numPendingAllocateNow = numPendingAllocate.addAndGet(-1 * allocatedContainers.size)

      if (numPendingAllocateNow < 0) {
        numPendingAllocateNow = numPendingAllocate.addAndGet(-1 * numPendingAllocateNow)
      }

      val hostToContainers = new HashMap[String, ArrayBuffer[Container]]()

      for (container <- allocatedContainers) {
     // 内存 > Executor所需内存 + 384
        if (isResourceConstraintSatisfied(container)) {
          // 把container收入名册当中,等待发落
          val host = container.getNodeId.getHost
          val containersForHost = hostToContainers.getOrElseUpdate(host, new ArrayBuffer[Container]())
          containersForHost += container
        } else {
          // 内存不够,释放掉它
          releaseContainer(container)
        }
      }

      // 找到合适的container来使用.
      val dataLocalContainers = new HashMap[String, ArrayBuffer[Container]]()
      val rackLocalContainers = new HashMap[String, ArrayBuffer[Container]]()
      val offRackContainers = new HashMap[String, ArrayBuffer[Container]]()
    // 遍历所有的host
      for (candidateHost <- hostToContainers.keySet) {
        val maxExpectedHostCount = preferredHostToCount.getOrElse(candidateHost, 0)
        val requiredHostCount = maxExpectedHostCount - allocatedContainersOnHost(candidateHost)

        val remainingContainersOpt = hostToContainers.get(candidateHost)
        var remainingContainers = remainingContainersOpt.get
      
        if (requiredHostCount >= remainingContainers.size) {
          // 需要的比现有的多,把符合数据本地性的添加到dataLocalContainers映射关系里
          dataLocalContainers.put(candidateHost, remainingContainers)
          // 没有containner剩下的.
          remainingContainers = null
        } else if (requiredHostCount > 0) {
          // 获得的container比所需要的多,把多余的释放掉
          val (dataLocal, remaining) = remainingContainers.splitAt(remainingContainers.size - requiredHostCount)
          dataLocalContainers.put(candidateHost, dataLocal)

          for (container <- remaining) releaseContainer(container)
          remainingContainers = null
        }

        // 数据所在机器已经分配满任务了,只能在同一个rack里面挑选了
        if (remainingContainers != null) {
          val rack = YarnAllocationHandler.lookupRack(conf, candidateHost)
          if (rack != null) {
            val maxExpectedRackCount = preferredRackToCount.getOrElse(rack, 0)
            val requiredRackCount = maxExpectedRackCount - allocatedContainersOnRack(rack) -
              rackLocalContainers.getOrElse(rack, List()).size

            if (requiredRackCount >= remainingContainers.size) {
              // Add all remaining containers to to `dataLocalContainers`.
              dataLocalContainers.put(rack, remainingContainers)
              remainingContainers = null
            } else if (requiredRackCount > 0) {
              // Container list has more containers that we need for data locality.
              val (rackLocal, remaining) = remainingContainers.splitAt(remainingContainers.size - requiredRackCount)
              val existingRackLocal = rackLocalContainers.getOrElseUpdate(rack, new ArrayBuffer[Container]())

              existingRackLocal ++= rackLocal
              remainingContainers = remaining
            }
          }
        }

        if (remainingContainers != null) {
          // 还是不够,只能放到别的rack的机器上运行了
          offRackContainers.put(candidateHost, remainingContainers)
        }
      }

      // 按照数据所在机器、同一个rack、任意机器来排序
      val allocatedContainersToProcess = new ArrayBuffer[Container](allocatedContainers.size)
      allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(dataLocalContainers)
      allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(rackLocalContainers)
      allocatedContainersToProcess ++= TaskSchedulerImpl.prioritizeContainers(offRackContainers)

      // 遍历选择了的Container,为每个Container启动一个ExecutorRunnable线程专门负责给它发送命令
      for (container <- allocatedContainersToProcess) {
        val numExecutorsRunningNow = numExecutorsRunning.incrementAndGet()
        val executorHostname = container.getNodeId.getHost
        val containerId = container.getId
     // 内存需要大于Executor的内存 + 384
        val executorMemoryOverhead = (executorMemory + YarnAllocationHandler.MEMORY_OVERHEAD)

        if (numExecutorsRunningNow > maxExecutors) {
          // 正在运行的比需要的多了,释放掉多余的Container
          releaseContainer(container)
          numExecutorsRunning.decrementAndGet()
        } else {
          val executorId = executorIdCounter.incrementAndGet().toString
          val driverUrl = "akka.tcp://spark@%s:%s/user/%s".format(
            sparkConf.get("spark.driver.host"),
            sparkConf.get("spark.driver.port"),
            CoarseGrainedSchedulerBackend.ACTOR_NAME)


          // To be safe, remove the container from `pendingReleaseContainers`.
          pendingReleaseContainers.remove(containerId)
         // 把container记录到已分配的rack的映射关系当中
          val rack = YarnAllocationHandler.lookupRack(conf, executorHostname)
          allocatedHostToContainersMap.synchronized {
            val containerSet = allocatedHostToContainersMap.getOrElseUpdate(executorHostname,
              new HashSet[ContainerId]())

            containerSet += containerId
            allocatedContainerToHostMap.put(containerId, executorHostname)

            if (rack != null) {
              allocatedRackCount.put(rack, allocatedRackCount.getOrElse(rack, 0) + 1)
            }
          }
      // 启动一个线程给它进行跟踪服务,给它发送运行Executor的命令
          val executorRunnable = new ExecutorRunnable(
            container,
            conf,
            sparkConf,
            driverUrl,
            executorId,
            executorHostname,
            executorMemory,
            executorCores)
          new Thread(executorRunnable).start()
        }
      }
      
  }

1、把从ResourceManager中获得的Container进行选择,选择顺序是按照前面的介绍的三种类别依次进行,优先选择机器 > 同一个rack的机器 > 任意机器。

2、选择了Container之后,给每一个Container都启动一个ExecutorRunner一对一贴身服务,给它发送运行CoarseGrainedExecutorBackend的命令。

3、ExecutorRunner通过NMClient来向NodeManager发送请求。

总结:

把作业发布到yarn上面去执行这块涉及到的类不多,主要是涉及到Client、ApplicationMaster、YarnAllocationHandler、ExecutorRunner这四个类。

1、Client作为Yarn的客户端,负责向Yarn发送启动ApplicationMaster的命令。

2、ApplicationMaster就像项目经理一样负责整个项目所需要的工作,包括请求资源,分配资源,启动Driver和Executor,Executor启动失败的错误处理。

3、ApplicationMaster的请求、分配资源是通过YarnAllocationHandler来进行的。

4、Container选择的顺序是:优先选择机器 > 同一个rack的机器 > 任意机器。

5、ExecutorRunner只负责向Container发送启动CoarseGrainedExecutorBackend的命令。

6、Executor的错误处理是在ApplicationMaster的launchReporterThread方法里面,它启动的线程除了报告运行状态,还会监控Executor的运行,一旦发现有丢失的Executor就重新请求。

7、在yarn目录下看到的名称里面带有YarnClient的是属于yarn-client模式的类,实现和前面的也差不多。

其它的内容更多是Yarn的客户端api使用,我也不太会,只是看到了能懂个意思,哈哈。

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏开发之途

Android 模拟登陆网站实现移动客户端

5808
来自专栏积累沉淀

java事物处理

事物处理 什么是事物:个人认为事物,就是对数据库进行一组操作动作的集合,如果一组处理步骤要么全发生,要么一步也不执行,称这组处理步骤为一个事物。当所...

2659
来自专栏我和PYTHON有个约会

Django来敲门~第一部分【5.1.项目配置settings.py详解】

我们创建好了一个Python项目(mysite/)之后,需要在项目中添加模块应用(polls/),在模块应用中添加处理功能逻辑,如添加模块中的视图处理函数(po...

1063
来自专栏星回的实验室

打造自己的MapReduce[二]:Hadoop连接MongoDB

在搭建完Hadoop集群后,我们可以基于HDFS做一些离线计算。然而HDFS毕竟是基于文件的系统,所以当我们存储的数据要兼顾一些线上业务访问的时候(如接入层/推...

2032
来自专栏王小雷

Hive基础(1)

Hive基础(1) Hive的HQL(2) 1. Hive并不是分布式的,它独立于机器之外,类似于Hadoop的客户端。 2. 元数据和数据的区别,前者如表名、...

2547
来自专栏闵开慧

大数据面试题整理

JAVA相关 1-1)List 与set 的区别? 老掉牙的问题了,还在这里老生常谈:List特点:元素有放入顺序,元素可重复 ,Set特点:元素无放入顺序,...

4.6K14
来自专栏码农阿宇

国内开源社区巨作AspectCore-Framework入门

在软件业,AOP为Aspect Oriented Programming的缩写,意为:面向切面编程,通过预编译方式和运行期动态代理实现程序功能的统一维护的一种技...

2811
来自专栏Fish

利用IDEA查看和修改spark源码

经过了两天的摸索,算是初步学会了如何查看和修改spark源码。 大坑 对,这个要写在最前面,那就是注意你的scalaSDK版本!!!!不同的Spark版本支持的...

4229
来自专栏伦少的博客

Spark读取压缩文件

1.9K10
来自专栏YG小书屋

ElasticSearch 5.6源码解析HTTP/TCP请求

5163

扫码关注云+社区

领取腾讯云代金券