前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >hbase源码系列(一)Balancer 负载均衡

hbase源码系列(一)Balancer 负载均衡

作者头像
岑玉海
发布2018-03-01 11:28:46
1.4K0
发布2018-03-01 11:28:46
举报
文章被收录于专栏:岑玉海岑玉海岑玉海

  看源码很久了,终于开始动手写博客了,为什么是先写负载均衡呢,因为一个室友入职新公司了,然后他们遇到这方面的问题,某些机器的硬盘使用明显比别的机器要多,每次用hadoop做完负载均衡,很快又变回来了。

  首先我们先看HMaster当中怎么初始化Balancer的,把集群的状态穿进去,设置master,然后执行初始化。

//initialize load balancer
this.balancer.setClusterStatus(getClusterStatus());
this.balancer.setMasterServices(this);
this.balancer.initialize();

  然后调用是在HMaster的balance()方法当中调用

Map<TableName, Map<ServerName, List<HRegionInfo>>> assignmentsByTable =
        this.assignmentManager.getRegionStates().getAssignmentsByTable();

List<RegionPlan> plans = new ArrayList<RegionPlan>();
//Give the balancer the current cluster state.
this.balancer.setClusterStatus(getClusterStatus());
//针对表来做平衡,返回平衡方案,针对全局,可能不是最优解
for (Map<ServerName, List<HRegionInfo>> assignments : assignmentsByTable.values()) {
    List<RegionPlan> partialPlans = this.balancer.balanceCluster(assignments);
    if (partialPlans != null) plans.addAll(partialPlans);
}

  可以看到它首先获取了当前的集群的分配情况,这个分配情况是根据表的 Map<TableName, Map<ServerName, List<HRegionInfo>>,然后遍历这个map的values,调用balancer.balanceCluster(assignments) 来生成一个partialPlans,生成RegionPlan(Region的移动计划) 。

  我们就可以切换到StochasticLoadBalancer当中了,这个是默认Balancer具体的实现了,也是最好的实现,下面就说说这玩意儿咋实现的。

  看一下注释,这个玩意儿吹得神乎其神的,它说它考虑到了这么多因素:

* <ul>
 * <li>Region Load</li> Region的负载
 * <li>Table Load</li>  表的负载
 * <li>Data Locality</li> 数据本地性
 * <li>Memstore Sizes</li> 内存Memstore的大小
 * <li>Storefile Sizes</li> 硬盘存储文件的大小
 * </ul>

  好,我们从balanceCluster开始看吧,一进来第一件事就是判断是否需要平衡

//不需要平衡就退出
if (!needsBalance(new ClusterLoadState(clusterState))) {
   return null;
}

  平衡的条件是:负载最大值和最小值要在平均值(region数/server数)的+-slop值之间, 但是这个平均值是基于表的,因为我们传进去的参数clusterState就是基于表的。

// Check if we even need to do any load balancing
// HBASE-3681 check sloppiness first
float average = cs.getLoadAverage(); // for logging
//集群的负载最大值和最小值要在平均值的+-slop值之间
int floor = (int) Math.floor(average * (1 - slop));
int ceiling = (int) Math.ceil(average * (1 + slop));
if (!(cs.getMinLoad() > ceiling || cs.getMaxLoad() < floor)) {
    .....return false;
}
return true;

   如果需要平衡的话,就开始计算开销了

// Keep track of servers to iterate through them.
Cluster cluster = new Cluster(clusterState, loads, regionFinder);
//计算出来当前的开销    
double currentCost = computeCost(cluster, Double.MAX_VALUE);
double initCost = currentCost;
double newCost = currentCost;

   上面的被我清除了细枝末节之后的代码主体,okay,上面逻辑过程如下:

1. 生成一个虚拟的集群cluster,方便计算计算当前状态的开销,其中clusterState是表的状态,loads是整个集群的状态。

// Keep track of servers to iterate through them.
Cluster cluster = new Cluster(clusterState, loads, regionFinder);
//计算出来当前的开销    
double currentCost = computeCost(cluster, Double.MAX_VALUE);
double initCost = currentCost;
double newCost = currentCost;

 2. 然后循环computedMaxSteps次,随机从选出一个picker来计算平衡方案

int pickerIdx = RANDOM.nextInt(pickers.length);
RegionPicker p = pickers[pickerIdx];
//用选号器从集群当中随机跳出一对来,待处理的<server,region>对
Pair<Pair<Integer, Integer>, Pair<Integer, Integer>> picks = p.pick(cluster);

  picker是啥?这里面有三个,第一个是RandomRegionPicker是随机挑选region,这里就不详细介绍了,主要讨论后面两个;第二个LoadPicker是计算负载的,第三个主要是考虑本地性的。

  给我感觉就很像ZF的摇号器一样,用哪种算法还要摇个号

pickers = new RegionPicker[] {
      new RandomRegionPicker(),
      new LoadPicker(),
      localityPicker
};

  下面我们先看localityPicker的pick方法,这个方法是随机抽选出来一个server、region,找出region的其他本地机器,然后他们返回。

  @Override
    Pair<Pair<Integer, Integer>, Pair<Integer, Integer>> pick(Cluster cluster) {
      if (this.masterServices == null) {
        return new Pair<Pair<Integer, Integer>, Pair<Integer, Integer>>(
            new Pair<Integer, Integer>(-1,-1),
            new Pair<Integer, Integer>(-1,-1)
        );
      }
      // Pick a random region server 随机选出一个server来
      int thisServer = pickRandomServer(cluster);

      // Pick a random region on this server 随机选出region
      int thisRegion = pickRandomRegion(cluster, thisServer, 0.0f);

      if (thisRegion == -1) {
        return new Pair<Pair<Integer, Integer>, Pair<Integer, Integer>>(
            new Pair<Integer, Integer>(-1,-1),
            new Pair<Integer, Integer>(-1,-1)
        );
      }

      // Pick the server with the highest locality 找出本地性最高的目标server
      int otherServer = pickHighestLocalityServer(cluster, thisServer, thisRegion);

      // pick an region on the other server to potentially swap
      int otherRegion = this.pickRandomRegion(cluster, otherServer, 0.5f);

      return new Pair<Pair<Integer, Integer>, Pair<Integer, Integer>>(
          new Pair<Integer, Integer>(thisServer,thisRegion),
          new Pair<Integer, Integer>(otherServer,otherRegion)
      );
    }

   okay,这个结束了,下面我们看看LoadPicker吧。

  @Override
    Pair<Pair<Integer, Integer>, Pair<Integer, Integer>> pick(Cluster cluster) {
      cluster.sortServersByRegionCount();
      //先挑选出负载最高的server
      int thisServer = pickMostLoadedServer(cluster, -1);
      //再选出除了负载最高的server之外负载最低的server
      int otherServer = pickLeastLoadedServer(cluster, thisServer);

      Pair<Integer, Integer> regions = pickRandomRegions(cluster, thisServer, otherServer);
      return new Pair<Pair<Integer, Integer>, Pair<Integer, Integer>>(
          new Pair<Integer, Integer>(thisServer, regions.getFirst()),
          new Pair<Integer, Integer>(otherServer, regions.getSecond())

      );
    }

  这里的负载高和负载低是按照Server上面的region数来算的,而不是存储文件啥的,选出负载最高和负载最低的时候,又随机抽出region来返回了。

  pick挑选的过程介绍完了,那么很明显,计算才是重头戏了,什么样的region会导致计算出来的分数高低呢?

3. 重点在计算函数上 computeCost(cluster, Double.MAX_VALUE) 结果这个函数也超级简单,哈哈

protected double computeCost(Cluster cluster, double previousCost) {
    double total = 0;
    
    for (CostFunction c:costFunctions) {
      if (c.getMultiplier() <= 0) {
        continue;
      }

      total += c.getMultiplier() * c.cost(cluster);

      if (total > previousCost) {
        return total;
      }
    }
    return total;
  }

  遍历CostFunction,拿cost的加权平均和计算出来。

  那costFunction里面都有啥呢?localityCost又出现了,看来本地性是一个很大的考虑的情况。

costFunctions = new CostFunction[]{
      new RegionCountSkewCostFunction(conf),
      new MoveCostFunction(conf),
      localityCost,
      new TableSkewCostFunction(conf),
      regionLoadFunctions[0],
      regionLoadFunctions[1],
      regionLoadFunctions[2],
      regionLoadFunctions[3],
};

  可以看出来,里面真正看中硬盘内容大小的,只有一个StoreFileCostFunction,cost的计算方式有些区别,但都是一个0-1之间的数字,下面给出里面5个函数都用过的cost的函数。

//cost函数
double max = ((count - 1) * mean) + (total - mean);
for (double n : stats) {
        double diff = Math.abs(mean - n);
        totalCost += diff;
}

double scaled =  scale(0, max, totalCost);
return scaled;

//scale函数
protected double scale(double min, double max, double value) {
      if (max == 0 || value == 0) {
        return 0;
      }

      return Math.max(0d, Math.min(1d, (value - min) / max));
}

  经过分析吧,我觉得影响里面最后cost最大的是它的权重,下面给一下,这些function的默认权重。

RegionCountSkewCostFunction hbase.master.balancer.stochastic.regionCountCost ,默认值500

MoveCostFunction hbase.master.balancer.stochastic.moveCost,默认值是100

localityCost hbase.master.balancer.stochastic.localityCost,默认值是25

TableSkewCostFunction hbase.master.balancer.stochastic.tableSkewCost,默认值是35

ReadRequestCostFunction hbase.master.balancer.stochastic.readRequestCost,默认值是5

WriteRequestCostFunction hbase.master.balancer.stochastic.writeRequestCost,默认值是5

MemstoreSizeCostFunction hbase.master.balancer.stochastic.memstoreSizeCost,默认值是5

StoreFileCostFunction hbase.master.balancer.stochastic.storefileSizeCost,默认值是5
Storefile的默认值是5,那么低。。。可以试着提高一下这个参数,使它在计算cost消耗的时候,产生更加正向的意义,效果不好说。

4. 根据虚拟的集群状态生成RegionPlan,这里就不说了

List<RegionPlan> plans = createRegionPlans(cluster);

  源码的分析完毕,要想减少存储内容分布不均匀,可以试着考虑增加一个picker,这样又不会缺少对其他条件的考虑,具体可以参考LoadPicker,复制它的实现再写一个,在pickMostLoadedServer和pickLeastLoadedServer这两个方法里面把考虑的条件改一下,以前的条件是Integer[] servers = cluster.serverIndicesSortedByRegionCount; 通过这个来查找一下负载最高和最低的server,那么现在我们要在Cluster里面增加一个Server ---> StoreFile大小的关系映射集合,但是这里面没有,只有regionLoads,RegionLoad这个类有一个方法getStorefileSizeMB可以获得StoreFile的大小,我们通过里面的region和server的映射regionIndexToServerIndex来最后计算出来这个映射关系即可,这个计算映射关系个过程放在Cluster的构造函数里面。

本文参与 腾讯云自媒体分享计划,分享自作者个人站点/博客。
原始发表:2014-04-07 ,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 作者个人站点/博客 前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
相关产品与服务
负载均衡
负载均衡(Cloud Load Balancer,CLB)提供安全快捷的流量分发服务,访问流量经由 CLB 可以自动分配到云中的多台后端服务器上,扩展系统的服务能力并消除单点故障。负载均衡支持亿级连接和千万级并发,可轻松应对大流量访问,满足业务需求。
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档