火爆的机器学习和人工智能,为何在金融业四处碰壁?

在2008年金融危机期间,银行业认识到,他们的机器学习算法是基于有缺陷的假设。 因此,金融体系监管机构决定需要额外的控制措施,并引入了对银行和保险公司进行“模式风险”管理的监管要求。

银行也必须证明他们理解他们所使用的模型,所以,令人遗憾但是可以理解的是,他们有意地限制了他们技术的复杂性,采用了简单和可解释性高于一切的广义线性模型。

如果你想建立对机器学习的信任,可以尝试像人一样对待它,问它同样的问题。

为了信任AI和机器学习提供的建议,来自所有行业的企业需要努力更好地理解它。 数据科学家和博士不应该是唯一能够清楚地解释机器学习模型的人,因为正如AI理论家Eliezer Yudkowsky所说的那样:“到目前为止,人工智能的最大危险在于人们过早地认为他们了解这项技术。

信任需要人为的方法

当数据科学家被问及机器学习模型是如何作出决定的时候,他们倾向于使用复杂的数学方程式去解答,使得外行人目瞪口呆,也不知道可以如何信任这个模型。 以与人类决策相同的方式来处理机器学习决策,会不会更有成效? 正如Udacity联合创始人塞巴斯蒂安·特伦(Sebastian Thrun)曾经说的:“人工智能几乎算得上是一门人文学科。 这实际上是一种理解人类智力和人类认知的尝试。”

所以,不要用复杂的数学方程来确定信贷员员如何做出决定,而只是简单地问:“贷款申请表上哪些信息对您的决定最重要?或者,“什么值表示风险的高低,以及您是如何决定接受或者拒绝一些特定的贷款申请的?

可以采用同样的人为方法去确定算法如何做出类似的决定的。例如,通过使用称为特性影响的机器学习技术,可以确定循环效用余额,申请人的收入以及贷款目的是信贷员算法的前三个最重要的信息。

通过使用称为原因代码的能力,人们可以看出每个贷款申请人的详细资料的估计中最重要的因素,并且通过利用称为部分依赖的技术,可以看到该算法将较高收入贷款申请的风险等级评为较低。

客观性,可扩展性和可预测性的价值

通过分析机器如何像人类一样做出决策可以使人类更好地理解人工智能和机器学习,此外,人类还可以通过认识到技术的独特能力来获得对人工智能和机器学习信任,包括:

● 解决可信度和数据异常值的问题:传统统计模型通常需要假设数据是如何创建的,数据的背后的过程以及数据的可信度。然而,机器学习通过使用高度灵活的算法来消除这些限制性的假设,这些算法不会给予比它应得的更多的可信度。

● 支持现代计算机和海量数据集:与手工流程不同,机器学习不假设世界充满了直线。相反,它会自动调整方程式以查明最佳模式,并测试哪些算法和模式最适合独立验证数据(而不是仅测试所训练的数据)。

● 利用缺少的值预测未来:高级机器学习不是要求数小时的数据清理,而是可以构建一个蓝图,优化特定算法的数据,自动检测缺失值,确定哪些算法不适用缺失值,寻找取代缺失值的最佳值,并使用缺失值的存在来预测不同的结果。

不要怀疑AI或机器学习的建议,让我们通过询问我们要求人类的相同推理问题来更好地理解它们。让我们认识到技术在降低数据异常可信度方面的客观能力,以及为当今海量数据提供可扩展的灵活性的能力。

也许最重要的是,让我们承认AI和机器学习的能力,通过利用缺少的信息来更好地预测未来的结果。因为虽然技术确实足够强大以至于需要警惕和正式的监管,但如果能够建立一个正确的理解和信任水平,消费者和企业都只会受益。

原文发布于微信公众号 - BestSDK(bestsdk)

原文发表时间:2017-11-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

帮AI摆脱“智障”之名,NLP这条路还有多远?

自然语言处理(NLP)是人工智能(AI)的一个分支,其目标是让计算机能够像人类一样理解、处理和生成自然语言。自然语言,又称人类语言,一般以文字或文本的形式存在于...

1442
来自专栏机器之心

Science组织了一场尖锐的Reddit问答,Yann LeCun的回答还是那么耿直

35713
来自专栏人工智能头条

专访 | 杨强教授谈CCAI、深度学习泡沫与人工智能入门

1163
来自专栏PPV课数据科学社区

机器学习的必备条件不是数学而是...

编者按:2012年10月《哈佛商业周刊》上面发表了一篇专栏,文章称“数据科学家”是21世纪最最性感的工作。在美国,数据科学家的年收入已超过律师和医生,无怪乎有人...

3677
来自专栏新智元

2017年的第一场顶会,AI 产业巨头都带来了哪些技术干货

【新智元导读】学术顶会AAAI 2017上,各大巨头表现活跃。谷歌大脑的首席科学家Vincent Vanhoucke、Facebook 应用机器实验室负责人Jo...

3627
来自专栏AI科技评论

动态 | 微软亚洲研究院资深研究员梅涛:原来视频可以这么玩了! | CCF-GAIR 2017

7月9日,由CCF主办,雷锋网与香港中文大学(深圳)承办的CCF-GAIR 2017全球人工智能与机器人峰会进入了第三天。在CV+专场首场,微软亚洲研究院资深研...

3687
来自专栏量子位

远离神经网络这个黑盒,人工智能不止这一条路可走

来源 |《连线》 编译整理 | 量子位 若朴 神经网络横扫硅谷如卷席,各式各样的人工智能(AI)已经潜入各式各样的互联网服务之中。不过就算神经网络已经能轻松的认...

2557
来自专栏新智元

百度徐伟:深度学习存在3大瓶颈,如何打造通用人工智能研究平台?

【新智元导读】百度IDL实验室杰出科学家徐伟关于“通用人工智能研究”的演讲,关于通用人工智能,此前大多数讨论都集中在相信不相信,可不可以实现阶段。但是,徐伟在本...

38210
来自专栏AI科技评论

学界|汤晓鸥:深度学习有哪三个要素,以及在中国创业是怎样一种感受?

雷锋网按:5月20日,由中国计算机学会(CCF)主办,Xtecher协办的2017 CCF青年精英大会在北京国家会议中心举行。中国工程院院士赵沁平、香港中文大学...

3695
来自专栏编程

5本书带你走进Python与机器学习的世界

基于大数据的人工智能如今异常火爆 Python 作为最热门的编程语言之一 是实现机器学习算法的首选语言 Python与机器学习这一话题非常的宽广 5本书虽很难覆...

37410

扫码关注云+社区

领取腾讯云代金券