专栏首页BestSDK挖掘用户行为数据最佳武器——SDK

挖掘用户行为数据最佳武器——SDK

越来越多的企业已开始挖掘用户行为数据的商业价值,利用行为数据进行精准有效的数字营销。以科技金融行业为例,某知名企业的数据表明:用户行为数据的效力是金融数据的4倍

一、企业的数据来源

企业收集、存储、分析数据,其目的就是为了解决业务需求,优化业务运营流程,提高其经营效率并降低成本。企业业务数据通过数据挖掘、深度分析和可视化展现,充分发现业务运营中的问题,进而制定更科学合理的运营策略,实现数据的价值。

企业有三类数据:

·企业内部的交易数据

·企业同用户之间的交互数据

·第三方数据,或称为外部数据

过去,企业的数据资产大多是建立在交易数据之上的,利用用户属性、销售数据、物流数据、内部流程等数据建立数据资产,开展商业应用。随着“用户时代”的到来,拥有数据的规模、灵活性,以及收集、运用数据的能力,将决定企业的核心竞争力。

通过挖掘收集的业务信息,企业可以预测市场需求,进行智能化决策分析,从而制定更加有效的战略,此外,以用户数据和业务数据为核心优化运营,通过用户画像、市场和渠道分析、销售数据的分析提升产品性能、优化运营效率、进行精准营销。

二、行为数据的采集和分析

用户行为数据:主要包含用户在网站和移动App中的浏览/点击/发帖等行为,行为数据其实有很大的商业价值,只是很多企业不知懂如何进行应用。用户行为数据采集基本上采用SDK方式,采集用户在页面的点击行为,同时也可进行参数回传。SDK就是几行轻量级代码,采集数据的类型取决于埋点。SDK在数据采集上没有技术壁垒,行为数据应用的主要技术壁垒在于海量行为数据的处理和分析。

1、SDK采集数据的私密性?

很多企业总认为SDK采集数据会涉及个人隐私,这主要还是不了解SDK数据采集的技术原理。

SDK,Software Development Kit,直译过来就是软件开发包,用N行软件代码采集数据。SDK采集的任何数据都来自用户的主观行为,企业在正常商业活动中获取的个人隐私数据并不违反法规,在没有得到用户授权的情况下,个人隐私数据被企业和第三方使用才是违法行为。

2、数据处理与分析,有多难?

用户行为数据的处理和分析具有较高的技术门槛:

SDK会采集到大量的“脏数据”,包含一些空白区域和特殊符号,甚至根本没有见过的数据类型,这些脏数据的处理和分析具有较大的技术挑战,特别是数据的实时采集和处理。通常技术人员只有经历了海量数据采集和处理,填平了大量“技术坑”之后,才能形成成熟的技术架构。

数据的采集和处理是个脏活累活,需要在真实数据环境进行实战,具有较高的技术壁垒和门槛。

3、难道,就这样放弃了吗?

为了降低数据采集和处理的技术壁垒,帮助企业准确且高效的采集数据,诸葛io在积累的大量业务实践中总结出一系列成功经验,供您直接“拿来主义”,直接跨过这条技术鸿沟。在数据采集阶段,诸葛io全程为您保驾护航,从数据分析需求梳理,埋点文档整理,到最终的技术执行,手把手让您走稳数据分析的第一步。

三、用户行为数据的商业价值

为了保证用户的产品使用流程流畅平滑,从用户出发进行产品设计就需要密切关注用户的反馈和需求,通过观察用户行为数据或者直接与用户对话来得到这些反馈,找到用户在哪里卡住了、出错了,如此才能打磨出最佳的用户体验路径,这就是用户行为数据的价值所在。在行为数据发挥价值之前,需要进行结构化和标签化:

·结构化,指将行为数据的展现形式从非结构数据转为结构化数据,并进行归类和统计;

·标签化,指根据业务场景将行为数据打上业务标签,围绕设备并与业务场景深度结合。

为行为数据打标签,通常有以下3个数据维度:时间、频次、结果。

1、时间

行为数据时间维度主要关注行为发生的时间段和持续时间,其中时间段数据用于目标设备时间范围选择,用于营销活动分析和营销推广计划设定。时间段也可以用于风控和反欺诈的场景,特殊群体的App使用行为在时间段具有较高的相似性。持续时间关注行为发生的过程,记录了行为起始和结束时间。

某一用户的全部会话记录

说明:全视角的用户画像,包括用户访问时间段,访问时长,甚至可以精确到用户发起会话、结束会话的时间点。

持续时间对于分析用户行为具有重要意义,不同时间长短代表用户不同特征,根据用户所处的生命周期,可洞察到用户与产品的交互状态。在一些数据模型分析中具有较高的商业价值,既可以用于购买人群分析、产品体验分析,甚至用于反欺诈分析。

2、频次

行为数据的频次主要关注某些特定行为发生的次数和趋势,其中次数同用户的兴趣具有较大的正相关度,在一定时间段内,点击浏览次数同用户购买需求成正比。次数经过标签化之后可以用于营销,识别潜在用户。

此外,通过页面的点击分析,了解产品体验和用户需求,从而优化产品布局,进行关联产品的销售。次数同产品成交和用户购买需求是弱相关关系,但是结合点击浏览次数等趋势数据,这些数据即可反应出产品转化和用户购买行为。

例如:用户在某段时间内突然频繁登录汽车类产品,从趋势分析上可以预测用户的购买需求,在某些场景下,趋势数据比频次数据的商业价值更高,可以直接预测客户的购买需求。

3、结果

行为数据的结果主要关注是否完成交易,用于判断用户点击浏览的结果。结果数据分为成交和不成交,基于业务需要也可采集填充的数值实现进一步的应用。

成交数据,可用于产品体验分析,用户体验分析,渠道ROI分析;

不成交数据,可用于二次营销,对潜在用户进行再次营销,结合时间段、持续时间、频次数据进行综合分析,筛选出目标客群。此外,结合成交数据和时间数据,在锁定产品问题后,更精准的优化产品体验,分析转化漏斗。

结果数据可用于直接营销,可加入到数据模型中,作为一个重要维度的参考数据。

场景举例:

筛选出有长期理财产品偏好的用户

说明:通过条件设置,在最近30天内搜索并查看长期理财产品分类及详情页大于等于3次的用户筛选出来,定义为有长期理财产品偏好的用户,可以针对这一客群进行潜在用户的二次营销,比如为其推送长期理财产品的加息券等,鼓励其完成投资。

四、行为数据的场景化应用

从业务需求(业务场景)出发,寻找同其高度相关的行为数据,是建立场景化行为数据标签的思路之一,分析某个业务在产品中的交易路径(交易步骤)。在接近交易路径的前几步,根据时间、频次和结果来建立其场景化标签。

基于行为数据的营销,需要将重点放在营销效果的衡量和营销方案迭代优化上,通过多次营销尝试找到一个比较合适的行为标签建立方式,确定频次、时间段、结果等选值,并逐步建立起一个稳定的运营方案和运营计划,其中一些固定运营方案可以固化在一周的某一天,甚至某个时段,形成固定的运营计划。

营销成功的关键在于不断的尝试,优化场景化标签中的各个数据维度和数值,同时在效果达到预期的方案固化,形成标准的运营方案。

场景举例:

1、促进首单转化:不断减少从新增到首投的时长周期

以首单转化场景为例,给新增用户设定一个条件:如果注册成功后一天未完成开户行为,即推送一条短信/移动端PUSH。在完成运营动作后,可自动衡量效果,统计出在执行运营动作后3天内实现“首单投资”的用户数,分析绝对数量/转化率/交易额。

2、促进追加投资:引导追加资产促进用户价值层级迁越

对于新手期的活跃用户,可通过手动设置完成运营:筛选出资产小于5万且最近30天内没有投资行为的用户,为其精准推送现金券,通过自动衡量查看效果:3天内实现使用现金券投资的用户数,自动分析绝对数量/转化率/交易额。

基于用户行为数据,以用户为中心,所有的功能体验都围绕用户需求、用户感知而展开,才能很好地提升用户满意度,那么转化率的提升也就显得水到渠成。

本文分享自微信公众号 - BestSDK(bestsdk)

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-12-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • 如何像BAT 一样,挖掘金融大数据这座“金矿”?

    金融创新很大一部分原因在于大数据和金融之间的结合。纵观BAT、京东、小米、万达、平安这些把触角伸到互联网金融领域的巨头,无一不是在大数据层面上有所布局。大数据和...

    BestSDK
  • 大数据是把万能钥匙,就看你想打开什么样的“宝盒”

    中国大数据应用大会的举办地并不是“常规选项”北上深,而是位于中国国家战略“一带一路”节点之上的四川成都。在过着“安逸巴适”的生活的同时,四川已经拥有了各类产业园...

    BestSDK
  • 2017作为大数据爆发年,将会对企业产生6大影响

    ·人工智能(AI)将再度盛行 早在60年代,RaySolomonoff奠定了人工智能的数学理论基础,引入通用贝叶斯原理(Bayesian)来归纳推理和预测。1...

    BestSDK
  • 【聚焦】数据分析三部曲

    University Of Maryland的Shneiderman教授把数据分析的过程归纳为三大步:Overview,Zoom&Filter,Detail-o...

    小莹莹
  • 【大咖周语录】中国有望在全球范围内首先实现OMO

    高铁、支付宝、共享单车、网购,这新四大发明已经使我们的生活发生了翻天覆地的变化,这些新发明都有新技术在背后做支撑。技术改变生活,生活也在考验技术。技术使我们的生...

    数据猿
  • 大数据24小时 | 姨妈界死对头秒变难兄难弟,文艺的蜻蜓fm智商捉急,这一切都从数据造假说起

    WhatsApp事件升级,消费者的口还没堵住,美国政府和欧盟又来凑热闹;美柚大姨吗被曝数据放卫星,蜻蜓fm一年用户缩水8千万;云计算服务商 UCloud 与苹果...

    数据猿
  • 数据库系统概述必背知识点整理

    慕白
  • 达观数据创始人陈运文:算法技术剖析海量数据,数据价值驱动企业收益

    在数据不断增加和算法技术日益优良的并行时代,借助技术去挖掘数据蕴藏的价值,利用数据蕴藏的价值去驱动企业的运营和发展,这是技术、数据、企业收益三者之间的良性循环,...

    数据猿
  • 我们为什么需要去中心化身份

    本篇文章尝试回答两个问题。第一个问题是如何保证从企业或机构中的泄露数据中不会关联用户的身份信息。第二个问题是如何保障企业或机构在正常经营中能够拿到必要的身份数据...

    lambeta
  • 大数据就是“大而全”?诸葛io邱千秋:数据“瘦身”后威力才更大

    引言:李彦宏说过,如果以英国的工业革命来比喻的话,大数据就是煤,Ai技术就是蒸汽机。数据越多,动力越足,这几乎是常识性问题,但是事实真的就是这样吗? 记者 | ...

    数据猿

扫码关注云+社区

领取腾讯云代金券