大会 | DiracNets:无需跳层连接的ResNet

AI 科技评论按:本文作者 David 9,首发于作者的个人博客,AI 科技评论获其授权转载。

虚拟化技术牺牲硬件开销和性能,换来软件功能的灵活性;深度模型也类似,如果把网络结构参数化,得到的模型更灵活易控,但是计算效率并不高。 — David 9

近年来深度网络结构的创新层出不穷:残差网络,Inception 系列, Unet 等等...微软的残差网络 ResNet 就是经典的跳层连接(skip-connection):

来自:https://arxiv.org/pdf/1512.03385.pdf

上一层的特征图 x 直接与卷积后的 F(x)对齐加和,变为 F(x)+x (特征图数量不够可用 0 特征补齐,特征图大小不一可用带步长卷积做下采样)。这样在每层特征图中添加上一层的特征信息,可使网络更深,加快反馈与收敛。

但是 ResNet 也有明显的缺陷:我们无法证明把每一层特征图硬连接到下一层都是有用的;另外实验证明把 ResNet 变「深」,不如把 ResNet 变「宽」, 即,到了一定深度,加深网络已经无法使 ResNet 准确度提升了(还不如把网络层像 Inception 那样变宽)。

于是,DiracNets 试图去掉固定的跳层连接,试图用参数化的方法代替跳层连接:

那么问题来了,我们怎么参数化这个被删除的跳层连接?使得新增的参数像卷积核窗口参数一样是可训练的?

有一点是确定的,我们知道 F(x)+x 的对齐求和操作是线性的,卷积操作 F 也是线性的,所以,理论上 F(x)+x 可以合并成一个卷积操作(或者一个线性变换):

其中 x 即输入特征图。其中

就是合并后的卷积核窗口参数矩阵(这个参数已经蕴含了卷积操作跳层操作)。

其中

代表卷积操作。

最后,让我们再把上式的参数拆分开来:

其中 W 即代表 ResNet 中的卷积操作的参数,I 即代表 ResNet 中的跳层操作的参数

有没有觉得 I 和单位矩阵很像? 你猜对了 ! I 就是由卷积窗口导出的单位参数矩阵,也叫 Dirac delta 变换,任何输入 x 经过这个 I 矩阵 的变换,其输出还是 x 本身。

diag (a) 也是一个可训练的向量参数,用来控制需要跳层连接的程度(需要单位矩阵的程度)。

现在我们看看这种参数化的 ResNet 是不是更灵活了?

如果 diag(a)向量都是趋近于 0 的,那么 I 单位矩阵就基本起不到作用, 那么跳层连接就被削弱了。这时原始的卷积操作 W 就认为占主导作用

如果 diag(a)向量都是趋近于 1 的,并且 W 参数都非常小,那么卷积操作就被削弱了,输出和输入的特征图 x 很相似

通过训练 diag(a),我们可以控制 ResNet 中的跳层操作和卷积操作两者的权重。而不是像传统 ResNet,不得不硬连接加上一个跳层连接(无论有用或没用)。

代码实现上,PyTorch 提供了许多灵活的方法,torch.nn.functional 接口允许你人工指定各个参数矩阵:

import torch.nn.functional as F

def dirac_conv2d(input, W, alpha, beta)

   return F.conv2d(input, alpha * dirac(W) + beta * normalize(W))

上面代码把参数矩阵对于之前说的拆分成两部分:

  1. alpha * dirac(W) + beta * normalize(W)

幸运的是pytorch提供现成的计算dirac单位矩阵的函数(http://pytorch.org/docs/0.1.12/nn.html#torch.nn.init.dirac):

  1. torch.nn.init.dirac(tensor)

如需深入研究,别错过源代码: https://github.com/szagoruyko/diracnets

最后我们看看实验结果.

在同等深度的情况下,DiracNets 普遍需要更多的参数才能达到和 ResNet 相当的准确率:

来自:https://arxiv.org/pdf/1706.00388.pdf

来自:https://arxiv.org/pdf/1706.00388.pdf

而如果不考虑参数数量,DiracNets 需要较少的深度,就能达到 ResNet 需要很深的深度才能达到的准确率:

来自:https://arxiv.org/pdf/1706.00388.pdf

参考文献:

  1. DiracNets: Training Very Deep Neural Networks Without Skip-Connections
  2. https://github.com/szagoruyko/diracnets
  3. Deep Residual Learning for Image Recognition
  4. https://zh.wikipedia.org/wiki/%E7%8B%84%E6%8B%89%E5%85%8B%CE%B4%E5%87%BD%E6%95%B0
  5. http://pytorch.org/docs/0.1.12/_modules/torch/nn/functional.html

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2018-02-26

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Java Edge

AbstractList源码解析1 实现的方法2 两种内部迭代器3 两种内部类3 SubList 源码分析4 RandomAccessSubList 源码:AbstractList 作为 Lis

它实现了 List 的一些位置相关操作(比如 get,set,add,remove),是第一个实现随机访问方法的集合类,但不支持添加和替换

422
来自专栏xingoo, 一个梦想做发明家的程序员

AOE关键路径

这个算法来求关键路径,其实就是利用拓扑排序,首先求出,每个节点最晚开始时间,再倒退求每个最早开始的时间。 从而算出活动最早开始的时间和最晚开始的时间,如果这两个...

2517
来自专栏Hongten

ArrayList VS Vector(ArrayList和Vector的区别)_面试的时候经常出现

1692
来自专栏后端之路

LinkedList源码解读

List中除了ArrayList我们最常用的就是LinkedList了。 LInkedList与ArrayList的最大区别在于元素的插入效率和随机访问效率 ...

19710
来自专栏项勇

笔记68 | 切换fragmengt的replace和add方法笔记

1444
来自专栏java闲聊

JDK1.8 ArrayList 源码解析

当运行 ArrayList<Integer> list = new ArrayList<>() ; ,因为它没有指定初始容量,所以它调用的是它的无参构造

1192
来自专栏ml

朴素贝叶斯分类器(离散型)算法实现(一)

1. 贝叶斯定理:        (1)   P(A^B) = P(A|B)P(B) = P(B|A)P(A)   由(1)得    P(A|B) = P(B|...

3447
来自专栏desperate633

LeetCode Invert Binary Tree题目分析

Invert a binary tree. 4 / \ 2 7 / \ / \1 3 6 9 to4 / \ 7 2 / \ / \9 6 3 1 Tri...

851
来自专栏赵俊的Java专栏

从源码上分析 ArrayList

1171
来自专栏开发与安全

算法:AOV网(Activity on Vextex Network)与拓扑排序

在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex ...

2517

扫码关注云+社区