一文看懂常用的梯度下降算法

作者:叶 虎

编辑:祝鑫泉

概述

梯度下降算法(Gradient Descent Optimization)是神经网络模型训练最常用的优化算法。对于深度学习模型,基本都是采用梯度下降算法来进行优化训练的。梯度下降算法背后的原理:目标函数

关于参数

的梯度将是目标函数上升最快的方向。对于最小化优化问题,只需要将参数沿着梯度相反的方向前进一个步长,就可以实现目标函数的下降。这个步长又称为学习速率

。参数更新公式如下:

其中

是参数的梯度,根据计算目标函数

采用数据量的不同,梯度下降算法又可以分为批量梯度下降算法(Batch Gradient Descent),随机梯度下降算法(Stochastic GradientDescent)和小批量梯度下降算法(Mini-batch Gradient Descent)。对于批量梯度下降算法,其

是在整个训练集上计算的,如果数据集比较大,可能会面临内存不足问题,而且其收敛速度一般比较慢。随机梯度下降算法是另外一个极端,

是针对训练集中的一个训练样本计算的,又称为在线学习,即得到了一个样本,就可以执行一次参数更新。所以其收敛速度会快一些,但是有可能出现目标函数值震荡现象,因为高频率的参数更新导致了高方差。小批量梯度下降算法是折中方案,选取训练集中一个小批量样本计算

,这样可以保证训练过程更稳定,而且采用批量训练方法也可以利用矩阵计算的优势。这是目前最常用的梯度下降算法。

对于神经网络模型,借助于BP算法可以高效地计算梯度,从而实施梯度下降算法。但梯度下降算法一个老大难的问题是:不能保证全局收敛。如果这个问题解决了,深度学习的世界会和谐很多。梯度下降算法针对凸优化问题原则上是可以收敛到全局最优的,因为此时只有唯一的局部最优点。而实际上深度学习模型是一个复杂的非线性结构,一般属于非凸问题,这意味着存在很多局部最优点(鞍点),采用梯度下降算法可能会陷入局部最优,这应该是最头疼的问题。这点和进化算法如遗传算法很类似,都无法保证收敛到全局最优。因此,我们注定在这个问题上成为“高级调参师”。可以看到,梯度下降算法中一个重要的参数是学习速率,适当的学习速率很重要:学习速率过小时收敛速度慢,而过大时导致训练震荡,而且可能会发散。理想的梯度下降算法要满足两点:收敛速度要快;能全局收敛。为了这个理想,出现了很多经典梯度下降算法的变种,下面将分别介绍它们。

01

Momentum optimization

冲量梯度下降算法是BorisPolyak在1964年提出的,其基于这样一个物理事实:将一个小球从山顶滚下,其初始速率很慢,但在加速度作用下速率很快增加,并最终由于阻力的存在达到一个稳定速率。对于冲量梯度下降算法,其更新方程如下:

可以看到,参数更新时不仅考虑当前梯度值,而且加上了一个积累项(冲量),但多了一个超参

,一般取接近1的值如0.9。相比原始梯度下降算法,冲量梯度下降算法有助于加速收敛。当梯度与冲量方向一致时,冲量项会增加,而相反时,冲量项减少,因此冲量梯度下降算法可以减少训练的震荡过程。TensorFlow中提供了这一优化器:tf.train.MomentumOptimizer(learning_rate=learning_rate,momentum=0.9)。

02

NAG

NAG算法全称Nesterov Accelerated Gradient,是YuriiNesterov在1983年提出的对冲量梯度下降算法的改进版本,其速度更快。其变化之处在于计算“超前梯度”更新冲量项,具体公式如下:

既然参数要沿着

更新,不妨计算未来位置

的梯度,然后合并两项作为最终的更新项,其具体效果如图1所示,可以看到一定的加速效果。在TensorFlow中,NAG优化器为:tf.train.MomentumOptimizer(learning_rate=learning_rate,momentum=0.9, use_nesterov=True)

图1 NAG效果图

03

AdaGrad

AdaGrad是Duchi在2011年提出的一种学习速率自适应的梯度下降算法。在训练迭代过程,其学习速率是逐渐衰减的,经常更新的参数其学习速率衰减更快,这是一种自适应算法。其更新过程如下:

其中是梯度平方的积累量,在进行参数更新时,学习速率要除以这个积累量的平方根,其中加上一个很小值是为了防止除0的出现。由于是该项逐渐增加的,那么学习速率是衰减的。考虑如图2所示的情况,目标函数在两个方向的坡度不一样,如果是原始的梯度下降算法,在接近坡底时收敛速度比较慢。而当采用AdaGrad,这种情况可以被改观。由于比较陡的方向梯度比较大,其学习速率将衰减得更快,这有利于参数沿着更接近坡底的方向移动,从而加速收敛。

图2 AdaGrad效果图

前面说到AdaGrad其学习速率实际上是不断衰减的,这会导致一个很大的问题,就是训练后期学习速率很小,导致训练过早停止,因此在实际中AdaGrad一般不会被采用,下面的算法将改进这一致命缺陷。不过TensorFlow也提供了这一优化器:tf.train.AdagradOptimizer。

04

RMSprop

RMSprop是Hinton在他的课程上讲到的,其算是对Adagrad算法的改进,主要是解决学习速率过快衰减的问题。其实思路很简单,类似Momentum思想,引入一个超参数,在积累梯度平方项进行衰减:

可以认为仅仅对距离时间较近的梯度进行积累,其中一般取值0.9,其实这样就是一个指数衰减的均值项,减少了出现的爆炸情况,因此有助于避免学习速率很快下降的问题。同时Hinton也建议学习速率设置为0.001。RMSprop是属于一种比较好的优化算法了,在TensorFlow中当然有其身影:tf.train.RMSPropOptimizer(learning_rate=learning_rate,momentum=0.9, decay=0.9, epsilon=1e-10)。

不得不说点题外话,同时期还有一个Adadelta算法,其也是Adagrad算法的改进,而且改进思路和RMSprop很像,但是其背后是基于一次梯度近似代替二次梯度的思想,感兴趣的可以看看相应的论文,这里不再赘述。

05

Adam

Adam全称Adaptive moment estimation,是Kingma等在2015年提出的一种新的优化算法,其结合了Momentum和RMSprop算法的思想。相比Momentum算法,其学习速率是自适应的,而相比RMSprop,其增加了冲量项。所以,Adam是两者的结合体:

可以看到前两项和Momentum和RMSprop是非常一致的,由于和的初始值一般设置为0,在训练初期其可能较小,第三和第四项主要是为了放大它们。最后一项是参数更新。其中超参数的建议值是

。Adm是性能非常好的算法,在TensorFlow其实现如下: tf.train.AdamOptimizer(learning_rate=0.001,beta1=0.9, beta2=0.999, epsilon=1e-08)。

学习速率

前面也说过学习速率的问题,对于梯度下降算法,这应该是一个最重要的超参数。如果学习速率设置得非常大,那么训练可能不会收敛,就直接发散了;如果设置的比较小,虽然可以收敛,但是训练时间可能无法接受;如果设置的稍微高一些,训练速度会很快,但是当接近最优点会发生震荡,甚至无法稳定。不同学习速率的选择影响可能非常大,如图3所示。

图3 不同学习速率的训练效果

理想的学习速率是:刚开始设置较大,有很快的收敛速度,然后慢慢衰减,保证稳定到达最优点。所以,前面的很多算法都是学习速率自适应的。除此之外,还可以手动实现这样一个自适应过程,如实现学习速率指数式衰减:

在TensorFlow中,你可以这样实现:

initial_learning_rate = 0.1
decay_steps = 10000
decay_rate = 1/10
global_step = tf.Variable(0, trainable=False)
learning_rate = tf.train.exponential_decay(initial_learning_rate,                           
                            global_step, decay_steps, decay_rate)
# decayed_learning_rate = learning_rate *
#                decay_rate ^ (global_step / decay_steps)
optimizer = tf.train.MomentumOptimizer(learning_rate, momentum=0.9)
training_op = optimizer.minimize(loss, global_step=global_step)

总结

本文简单介绍了梯度下降算法的分类以及常用的改进算法,总结来看,优先选择学习速率自适应的算法如RMSprop和Adam算法,大部分情况下其效果是较好的。还有一定要特别注意学习速率的问题。其实还有很多方面会影响梯度下降算法,如梯度的消失与爆炸,这也是要额外注意的。最后不得不说,梯度下降算法目前无法保证全局收敛还将是一个持续性的数学难题。

参考文献

  1. Anoverview of gradient descent optimization algorithms: http://sebastianruder.com/optimizing-gradient-descent/.
  2. Hands-OnMachine Learning with Scikit-Learn and TensorFlow, Aurélien Géron, 2017.
  3. NAG:http://proceedings.mlr.press/v28/sutskever13.pdf.
  4. Adagrad:http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf.
  5. RMSprop:http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.
  6. Adadelta:https://arxiv.org/pdf/1212.5701v1.pdf.
  7. Adam:https://arxiv.org/pdf/1412.6980.pdf.
  8. 不同的算法的效果可视化:https://imgur.com/a/Hqolp.

原文发布于微信公众号 - 机器学习算法全栈工程师(Jeemy110)

原文发表时间:2017-11-29

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Java Edge

AbstractList源码解析1 实现的方法2 两种内部迭代器3 两种内部类3 SubList 源码分析4 RandomAccessSubList 源码:AbstractList 作为 Lis

它实现了 List 的一些位置相关操作(比如 get,set,add,remove),是第一个实现随机访问方法的集合类,但不支持添加和替换

422
来自专栏xingoo, 一个梦想做发明家的程序员

AOE关键路径

这个算法来求关键路径,其实就是利用拓扑排序,首先求出,每个节点最晚开始时间,再倒退求每个最早开始的时间。 从而算出活动最早开始的时间和最晚开始的时间,如果这两个...

2507
来自专栏计算机视觉与深度学习基础

Leetcode 114 Flatten Binary Tree to Linked List

Given a binary tree, flatten it to a linked list in-place. For example, Given...

1938
来自专栏开发与安全

算法:AOV网(Activity on Vextex Network)与拓扑排序

在一个表示工程的有向图中,用顶点表示活动,用弧表示活动之间的优先关系,这样的有向图为顶点表示活动的网,我们称之为AOV网(Activity on Vextex ...

2517
来自专栏xingoo, 一个梦想做发明家的程序员

20120918-向量实现《数据结构与算法分析》

#include <iostream> #include <list> #include <string> #include <vector> #include...

1706
来自专栏赵俊的Java专栏

从源码上分析 ArrayList

1161
来自专栏项勇

笔记68 | 切换fragmengt的replace和add方法笔记

1444
来自专栏ml

朴素贝叶斯分类器(离散型)算法实现(一)

1. 贝叶斯定理:        (1)   P(A^B) = P(A|B)P(B) = P(B|A)P(A)   由(1)得    P(A|B) = P(B|...

3427
来自专栏xingoo, 一个梦想做发明家的程序员

Spark踩坑——java.lang.AbstractMethodError

百度了一下说是版本不一致导致的。于是重新检查各个jar包,发现spark-sql-kafka的版本是2.2,而spark的版本是2.3,修改spark-sql-...

1200
来自专栏学海无涯

Android开发之奇怪的Fragment

说起Android中的Fragment,在使用的时候稍加注意,就会发现存在以下两种: v4包中的兼容Fragment,android.support.v4.ap...

3155

扫码关注云+社区