从损失函数的角度详解常见机器学习算法(2)

作者:章华燕

小编:赵一帆

逻辑回归详解

分类是监督学习的一个核心问题,在监督学习中,当输出变量Y取有限个离散值时,预测问题便成为分类问题。这时,输入变量X可以是离散的,也可以是连续的。监督学习从数据中学习一个分类模型或分类决策函数,称为分类器(classifier)。分类器对新的输入进行输出的预测(prediction),称为分类(classification)。

统计学习方法都是由模型,策略,和算法构成的,即统计学习方法由三要素构成,可以简单表示为:

方法 = 模型 + 策略 + 算法

对于logistic回归来说,模型自然就是logistic回归,策略最常用的方法是用一个损失函数(loss function)或代价函数(cost function)来度量预测错误程度,算法则是求解过程,后期会详细描述相关的优化算法。

01

逻辑回归简介

逻辑回归在某些书中也被称为对数几率回归,明明被叫做回归,却用在了分类问题上,我个人认为这是因为逻辑回归用了和回归类似的方法来解决了分类问题。

假设有一个二分类问题,输出为y∈{0,1},而线性回归模型产生的预测值为 z=w^T x+b 是实数值,我们希望有一个理想的阶跃函数来帮我们实现z值到0/1值的转化:

然而该函数不连续,我们希望有一个单调可微的函数来供我们使用,于是便找到了 Sigmoid 函数来替代:

他们的函数图像如下所示:

有了Sigmoid 函数之后,由于其取值范围为[0,1]。我们就可以将其视为类1的后验概率估计p(y=1|x)。说白了,就是如果有了一个测试点x,那么就可以用Sigmoid 函数算出来的结果来当做该点x属于类别1的概率大小。

于是,非常自然地,我们把Sigmoid函数计算得到的值大于等于0.5的归为类别1,小于0.5的归为类别0:

同时逻辑回归于自适应线性网络非常相似,两者的区别在于逻辑回归的激活函数时Sigmoid function而自适应线性网络的激活函数是y=x,两者的网络结构如下图所示:

自适应线性网络

逻辑回归网络

02

逻辑回归的损失函数

好了,所要用的几个函数我们都好了,接下来要做的就是根据给定的训练集,把参数w给求出来了。要找参数w,首先就是得把代价函数(cost function)给定义出来,也就是目标函数。

我们第一个想到的自然是模仿线性回归的做法,利用误差平方和来当代价函数。

其中,z^(i)=w^T x^(i)+b,i表示第i个样本点,y^(i) 表示第i个样本的真实值,ϕ(z^(i)) 表示第i个样本的预测值。

这时,如果我们将 ϕ(z^(i))=1 / ( 1+epx(−z^(i)) ) 代入的话,会发现这时一个非凸函数,这就意味着代价函数有着许多的局部最小值,这不利于我们的求解:

那么我们不妨来换一个思路解决这个问题。前面,我们提到了ϕ(z)可以视为类1的后验估计,所以我们有:

其中,p(y=1|x;w)表示给定w,那么x点y=1的概率大小。 于是上面两式可以写成一般形式:

注:以上的过程说明,最大似然估计与误差平方和等价!这就是为什么逻辑回归的损失函数可以用最大似然函数进行估计的原因。

接下来我们就要用极大似然估计来根据给定的训练集估计出参数w:

为了简化运算,我们对上面这个等式的两边都取一个对数:

我们现在要求的是使得l(w)最大的w。没错,我们的代价函数出现了,我们在l(w)前面加个负号不就变成就最小了吗?不就变成我们代价函数了吗?

为了更好地理解这个代价函数,我们不妨拿一个例子的来看看:

也就是说 :

下面是函数图:

从图中不难看出,如果样本的值是1的话,估计值ϕ(z)越接近1付出的代价就越小,反之越大;同理,如果样本的值是0的话,估计值ϕ(z)越接近0付出的代价就越小,反之越大。

03

梯度下降法求参

在开始梯度下降之前,要这里插一句,sigmoid function有一个很好的性质就是 :

先记住这个性质,后续会用到。

还有,我们要明确一点,梯度的负方向就是代价函数下降最快的方向。什么?为什么?好,我来说明一下。借助于泰特展开,我们有 :

其中,f′(x)和δ为向量,那么这两者的内积就等于

当θ=π时,也就是δ在f′(x)的负方向上时,取得最小值,也就是下降的最快的方向了~

okay?好,坐稳了,我们要开始下降了。

其中,wj表示第j个特征的权重;η为学习率,用来控制步长。

重点来了:

所以,在使用梯度下降法更新权重时,只要根据下式即可:

此式与线性回归时更新权重用的式子极为相似,也许这也是逻辑回归要在后面加上回归两个字的原因吧。 当然,在样本量极大的时候,每次更新权重会非常耗费时间,这时可以采用随机梯度下降法,这时每次迭代时需要将样本重新打乱,然后用下式不断更新权重:

也就是去掉了求和,而是针对每个样本点都进行更新。

原文发布于微信公众号 - 机器学习算法全栈工程师(Jeemy110)

原文发表时间:2017-12-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

手把手丨我们在UCL找到了一个糖尿病数据集,用机器学习预测糖尿病

1493
来自专栏目标检测和深度学习

入门 | 什么是最大似然估计、最大后验估计以及贝叶斯参数估计

选自Medium 作者:Akihiro Matsukawa 机器之心编译 参与:Geek.ai、刘晓坤 本文以简单的案例,解释了最大似然估计、最大后验估计以及贝...

3106
来自专栏奇点大数据

最新训练神经网络的五大算法

作者: Alberto Quesada 译者: KK4SBB 神经网络模型的每一类学习过程通常被归纳为一种训练算法。训练的算法有很多,它们的特点和性能各不相同...

3514
来自专栏杂七杂八

梯度下降

梯度下降(Gradient Descent)是在求解机器学习算法的模型参数(无约束优化问题)时,最常采用的方法之一 代价函数 提到梯度下降就不得不说一下代价函...

2895
来自专栏程序生活

Contrastive Loss(对比损失)Contrastive Loss

1684
来自专栏云时之间

译文 朴素贝叶斯算法总结

在所有的机器学习分类算法中,朴素贝叶斯和其他绝大多数的分类算法都不同。对于大多数的分类算法,比如决策树,KNN,逻辑回归,支持向量机等,他们都是判别方法,也就是...

2779
来自专栏决胜机器学习

深层神经网络参数调优(二) ——dropout、题都消失与梯度检验

深层神经网络参数调优(二)——dropout、题都消失与梯度检验 (原创内容,转载请注明来源,谢谢) 一、dropout正则化 中文是随机失活正则化,这个是一...

3585
来自专栏机器之心

机器学习老中医:利用学习曲线诊断模型的偏差和方差

3077
来自专栏机器之心

入门 | 什么是最大似然估计、最大后验估计以及贝叶斯参数估计

选自Medium 作者:Akihiro Matsukawa 机器之心编译 参与:Geek.ai、刘晓坤 本文以简单的案例,解释了最大似然估计、最大后验估计以及贝...

2738
来自专栏新智元

训练神经网络的五大算法:技术原理、内存与速度分析

【新智元导读】 训练神经网络的算法有成千上万个,最常用的有哪些,哪一个又最好?作者在本文中介绍了常见的五个算法,并从内存和速度上对它们进行对比。最后,他最推荐莱...

4239

扫码关注云+社区