机器学习有望更深入、更便宜

2016年3月,谷歌的计算机彻底打败了世界围棋冠军李世石(Lee Sedol),这是人工智能领域的里程碑事件。获胜的计算机程序由英国伦敦谷歌DeepMind实验室的研究人员创建,利用了深度学习人工神经网络。深度学习是一种策略,多层处理的神经网络以自动化方式配置,解决手边的问题。

那时公众还不知道谷歌有这个秘密武器。谷歌用来打败李世石的计算机有专用硬件——谷歌称之为“张量处理单元”(Tensor Processing Unit)的计算机芯片。围棋比赛两个月后,谷歌硬件工程师宣布了张量处理单元的存在,并在博文中解释说,早在一年多之前谷歌就用这些加速芯片装备自己的数据中心了。谷歌并没有直接分享这些芯片上有什么,但是很显然它代表了加速深度学习计算的越来越普遍的策略:应用型专用集成电路(application-specific integrated circuit, ASIC)。

另一个(主要被微软)追求的策略是利用现场可编辑门阵列(field-programmable gate array, FPGA),其优势在于可根据计算要求改变而再配置。但是更常用的方法是使用图形处理器(graphics processing unit, GPU),可同时进行多个数学运算,这种方法最重要的支持者就是图形处理器制造商英伟达(Nvidia)。2009年,图形处理器的发展启动了人工神经网络,当时,美国斯坦福(Stanford)的研究人员展示了这种硬件可在合理时间内训练深度神经网络。英伟达首席科学家指出,“现在每个人都在做深度学习。”对此,他表示,“图形处理器几乎与你能实现的一样好。”鉴于他的工作,他的这一说法可能在情理之中。他解释说要考虑三个方面。第一方面他称之为“数据中心的训练”,并提到了任何深度学习系统的第一步:调整神经元之间可能数百万个的连接,以便网络能进行指定的任务。

要构建作用于此的硬件,Nervana系统公司在这方面处于领先地位,该公司刚被美国英特尔(Intel)收购。据该公司计算机科学家表示,应用型专用集成电路深度学习加速器Nervana Engine将在2017年初到年中投入生产。一项计算密集型任务——比特币挖矿——从在中央处理器(CPU)上运行,到图形处理器、现场可编辑门阵列,最后到应用型专用集成电路,因为这种定制化提高了能效。

深度学习硬件另一个独特的作用是“在数据中心进行推断”。这里的推断是指已经过训练可进行某些任务的基于云端的人工神经网络正在进行的操作。每一天,谷歌的神经网络都要进行无数次这种推断运算,用于分类图片、翻译、识别语音等。虽然很难肯定,但谷歌的张量处理单元可能是专为执行这样的计算而打造的。

训练和推断通常所需的技能集很不一样。对于训练,计算机必须能以较高精度运算,通常是32位浮点运算。对于推断,可以牺牲精度,换取更高的速度或更小的功率效率。“这是活跃的研究领域。”Nervana系统公司计算机科学家指出,“你能实现多低呢?”

虽然英伟达首席科学家拒绝透露该公司的具体计划,但他指出英伟达的图形处理器一直在进步。英伟达早期的Maxwell架构可进行双精度(64位)和单精度(32位)的运算,而其现有的Pascal架构增加了16位运算的能力,与单精度运算相比,其通量和效率都翻倍了。所以,很容易想到英伟达最终会发布能进行8位运算的图形处理器,这将是云端进行推断运算的最佳工具,因为功率效率是降低成本的关键。他补充说:“深度学习三大支持的最后一点是在嵌入式设备中进行推断”,如智能手机、相机、平板灯。对于这些应用,关键是低功耗的应用型专用集成电路。在未来一年,深度学习软件会不断进入智能手机的应用,例如,目前已经用于检测恶意软件或翻译图片中的文字。

中国无人机制造商大疆创新公司(DJI)已在其精灵4(Phantom 4)无人机上采用了类似于深度学习应用型专用集成电路的应用,通过美国加州视觉处理器生产商Movidius生产的专门视觉处理芯片来识别障碍物(Movidius是最近英特尔收购的又一家神经网络公司)。此外,高通(Qualcomm)在其骁龙820处理器中植入了专门的电路,帮助执行深度学习计算。

虽然目前有很多利好刺激硬件设计,加速深度神经网络的运算,但也存在巨大风险:如果最先进技术发展得够远,专为运行过去的神经网络而设计的芯片在制造的时候就将过时了。“算法改变的速度很快”英伟达首席科学家指出,“这个领域的每个人都在努力地兼顾,力争万无一失。”

原文发布于微信公众号 - 人工智能快报(AI_News)

原文发表时间:2017-03-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏量子位

谁说导航一定要用地图?谷歌DeepMind的强化学习模型靠街景认路

那会儿你可能还不知道什么是地图,也没有导航软件。但那条路的画面都在脑子里刻着。茂密的竹林,很多蛇出没的小山丘,还有泥鳅抓不完的池塘。

642
来自专栏新智元

【MICRO 2016】中国科学家提出国际首个稀疏深度学习处理器

【新智元导读】中国科学院计算技术研究所与寒武纪公司提出了国际上首个稀疏深度学习处理器 Cambricon-X,相关工作于近日被计算机体系结构领域顶级国际会议 ...

3055
来自专栏人工智能头条

【无人驾驶技术系列】光学雷达(LiDAR)在无人驾驶技术中的应用

1765
来自专栏区块链入门

重磅推荐:AI芯片产业生态梳理

AI芯片作为产业核心,也是技术要求和附加值最高的环节,在AI产业链中的产业价值和战略地位远远大于应用层创新。腾讯发布的《中美两国人工智能产业发展全面解读》报告显...

964
来自专栏机器人网

技术揭秘:扫地机器人是如何做室内定位的?

本文作者张玉坤/刘伟,来自北邮人机与认知实验室。路径规划技术是扫地机器人研究的核心内容之一,机器人定位与环境地图构建就是为路径规划服务的,本文是扫地机器人路径规...

3025
来自专栏机器之心

专访 | UIUC陈德铭教授:「万能芯片」FPGA与深度学习

人工智能的风潮从技术一路蔓延到硬件,让「芯片」成为今年行业里盛极一时的主题。人们关注通用芯片领域里 CPU 和 GPU 不断刷新的基准(benchmark),更...

872
来自专栏新智元

颠覆自动驾驶的AI相机来了!光速执行深度学习

如今,自动驾驶汽车和无人驾驶飞机背后的图像识别技术依赖于人工智能:计算机本质上学会了自己识别物体,比如识别狗、过马路的行人或停车的汽车。主要问题是,目前运行人工...

942
来自专栏人工智能的秘密

人工智能芯片是什么?有什么用?

2018年1月9日,全球规模最大的2018北美消费电子产品展在美国拉斯维加斯拉开帷幕。本次参展的科技企业超过4000家,包括高通、英伟达、英特尔、L...

2297
来自专栏机器人网

解读主流的人工智能芯片有什么不同?

 在全球规模最大的2018北美消费电子产品展上,参展的科技企业超过4000家,包括高通、英伟达、英特尔、LG、IBM、百度在内的业界科技巨头纷纷发布了各自最新的...

3619
来自专栏VRPinea

强行科普|今天你“吐”了吗?

2639

扫码关注云+社区