周刊 | 与其迷恋AI,不如“摸摸”这些开源平台

自Open AI的成立把AI平台的开源推向高潮后,Google,Facebook,微软,Twitter等公司也“半推半就” 地踏上了自家平台的开源之路,以此来吸引学术界, 工业界的研究人员,让他们更多地分享自己的研究成果。不管这些巨头的所为(公开分享软件和硬件设计),是为了加速人工智能行业的整体发展进度的初心,还是出于应对竞争对手的被迫之举,对于那些迷恋AI的人来说,都是一件好事。

就像你正对AI一筹莫展的时候,这些开源平台不由自主地就跳入了你的眼帘。

▎手把手教你玩转谷歌TensorFlow

为什么一开始选择Tensorflow作为首选平台?

最开始对于选取何种度学习平台并不确定,而且那时Tensorflow还尚未问世。当时的考虑主要是该平台的成熟程度,支持的编程语言,GPU的支持和效率,搭建神经网络的使用的方便程度,上手难易,平台的后续发展,开发的生态环境,平台的效率等因素。尽管我们收集了一些评比资料,要在诸多因素的权衡之中做出选择并非易事,而且逐个去试也不现实。不久之后,Tensorflow从Google开源,我们毫不犹豫地选定了它。

其一,TF有我们要求的所有功能(C++/Python语言支持,GPU,等)。更重要的是我们相信由Google推出的平台会很快为大家接受并迅速形成对应的开发生态圈和活跃的后续更新发展。后来的事实也证实了我们的料想。下面表格比较了几种流行的平台,数据来源于今年二月份在arXiv发布的论文。

▎MIT最新发布编程语言Milk,加速大数据时代并行运算

本周MIT最新发布新编程语言Milk,新的程序语言在大数据方面能实现比现有语言快四倍的处理速度。

本周在国际并行体系结构和编译技术会议(International Conference on Parallel Architectures and Compilation Techniques)上,来自麻省理工学院计算机科学与人工智能实验室(CSAIL)的研究人员发布了一种新的编程语言——Milk,它能让应用程序开发者在处理大数据集里的离散数据点问题中更有效率地管理内存。

通过测试几种通用的算法,使用新语言Milk编写的程序实现了比现有编程语言快4倍的速度。但是研究者相信通过更进一步的研究可以实现更好地结果。

电气工程和计算机科学教授Saman Amarasinghe 说,当下大数据集给已有的内存管理技术带来问题的原因不仅在于因为它们的规模巨大,更多的是因为它们是稀疏的(sparse)。也就是说,问题解决方案的规模并不一定是与问题的规模成正比增加。

▎OpenAI 教你如何构建深度学习研究的基础设施

OpenAI研究工程师Vicki Cheung, Jonas Schneider , Ilya Sutskever, and Greg Brockman在本文中分享了从事Deep Learning研究工作所需要的基础设施(软件、硬件、配置和编制),举例说明如何运用开源Kubernetes-ec2-autoscaler自动扩展深度学习研究中的网络模型,将有助于广大深度学习研究爱好者构建自己的深度学习基础设施。

深度学习是一门实证科学,一个研究团队的基础设施建设将对未来的研究工作产生重大影响。所幸,当今的开源生态系统能够使任何人具备构建更为完善的深度学习基础设施的能力。

在这篇文章中,我们将为大家介绍深度学习研究通常是如何进行的,描述我们为了支持深度学习研究所选择基础设施,和开源Kubernetes-ec2-autoscaler,一种用于Kubernetes的批次优化扩展管理器。我们希望,这篇文章有助于你构建自己的深度学习基础设施。

▎Twitter开源基于Lua/Torch的强化学习框架torch-twrl

Torch诞生已经有十年之久,但是真正起势得益于去年Facebook开源了大量Torch的深度学习模块和扩展。Torch另外一个特殊之处是采用了不怎么流行的编程语言Lua(该语言曾被用来开发视频游戏)。而今天,

增强学习算法(智能体)的目标一直是通过与任务(环境)的互动,来学会执行复杂的、新颖的任务。为了开发有效的算法,快速地迭代和测试是至关重要的,torch-twrl 如期开放。

借鉴其他的增强学习框架,torch-twrl 旨在提供:

在Lua/Torch 中,拥有最小函数依赖的增强学习框架; 定义清晰、模块化的代码(来促进快速开发); 与Open AI 的增强学习基准框架Gym 无缝对接。

嫌上面不过瘾? 15款开源人工智能软件挨个数,哪一款是你的菜?

人工智能是目前最热门的科研领域之一。诸如IBM、谷歌、微软、脸书和亚马逊这类大型公司不仅加大了对旗下发展研究部门的资金投入,同时也开始并购一些在机器学习、神经网络、自然语言与图像处理领域小有所成的初创公司。鉴于目前人工智能研究领域的火爆程度,斯坦福大学的教授们不久前作出了这样一份报告:“人工智能软件的作用越来越强大,而对人类社会、经济有强大影响力的人工智能软件将于2030年前面世”。

国外网站Datamation今日整理了目前热门的15款开源人工智能软件,雷锋网对全文进行了编译介绍。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-09-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏数据科学与人工智能

【数据挖掘】如何系统地学习数据挖掘?

问题:如何系统地学习数据挖掘? 虽然是本科毕业,但是在看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看svm的数学证明,EM算法..,感觉...

2488
来自专栏Forrest随想录

InfoQ访谈:为什么说运维的未来必然是 AIOps?

Gartner 在 2016 年时便提出了 AIOps 的概念,并预测到 2020 年,AIOps 的采用率将会达到 50%。如果 AIOps 真是未来运维技术...

692
来自专栏钱塘大数据

【干货】如何系统地学习数据挖掘?

问题:如何系统地学习数据挖掘? 虽然是本科毕业,但是在看数据挖掘方面的算法理论时经常感觉一些公式的推导过程如天书一般,例如看 svm 的数学证明,EM 算法.....

3488
来自专栏JAVA高级架构

想要成为一个合格的架构师?看这篇文章就足够了......

在互联网圈,架构师这个名号的火热程度堪比产品经理,它在产品经理没火之前就已经风生水起。

733
来自专栏数据科学与人工智能

【数据科学家】2015年最热门的职业:关于数据科学家的概念、职责、技能素养和学习资源完全手册

你是精通数学、擅长Python或者R并对某一特定行业有着深入理解的Geek么? 如果你的答案是Yes,不妨考虑一下21世纪最性感的职业——数据科学家。 领英最近...

19910
来自专栏机器学习算法与Python学习

人工智能应届毕业生月薪20k+,他们是如何做到的?

人工智能作为当下热门行业中的热门,释放出了大量的工作机会,而由于人工智能核心人才的缺乏,使得相关岗位的薪资日益水涨船高,特别是AI算法工程师岗,在北京、上海、广...

1285
来自专栏大数据文摘

分析3000份技术面试数据:这几大指标比你毕业于哪所学校更要紧

1763
来自专栏PPV课数据科学社区

【数据海洋】数据挖掘与统计分析的区别

多元统计老师说:“数据挖掘是以统计分析为基础的,多数在采用统计分析的方法”。我有不同的观点,就写点东西出来,大家可以自己评述。 ? 我们过去曾给予数据挖掘方法智...

2294
来自专栏大数据文摘

这门MIT最火的课程究竟是什么来头?

1534
来自专栏AI科技大本营的专栏

Facebook 应用机器学习团队专访:人工智能在 Facebook 中的应用

当下,应用机器学习团队(Applied Machine Learning Group)对 Facebook 的影响体现在方方面面,涉及阅读、交流方法和理解方式等...

3837

扫码关注云+社区