学界 | 照片欲静而 AI 不止,MIT 黑科技让图像秒变小视频

你有想过吗?给你展示任何一张照片的时候,你看到的也许不仅仅是静止的图像,而是一段灵动的“小视频”。如今,在机器学习的帮助下,可以根据静止的照片,预测到接下来的一连串动作,准确率还相当的高。

无论是美女骑车、狗接飞盘,还是有人突然的跌倒等等,想象出这些连续的动作是我们最基本的技能之一,我们无需考虑用于预测的大量信息,比如重力、惯性和跌倒的本能反应等。那么,要让电脑学会这种预判的能力无疑是机器视觉中的一个关键挑战。

来自麻省理工学院的研究人员正在努力解决这个难题,他们已经展示出了一系列非常令人印象深刻的结果。通过使用专门训练过的神经网络,将图像转化为视频,并由计算机预测接下来会发生什么。但是,他们的模型仍然有很多局限性,视频通常只有几秒钟长,文件很小,而且图像经常很混乱。但这仍然是机器想象力方面一次令人印象深刻的创举,计算机在像人一样理解世界的道路上又前进了一步。

训练这个神经网络使用了超过 200 万个从 Flickr 下载的视频片段。所有场景被分为四种类型:高尔夫球场、海滩、火车站和医院。这组连续镜头的画面很稳定,消除了相机抖动。通过这些数据,团队的神经网络不仅能够产生类似这些场景的短视频,也能根据一个静止图像产生连续的画面。这实质上是预判了接下来会发生的动作,但目前的效果还很有限,只能推测像素的变化,而不是基于整个场景的理解。

下面是效果图:

这里,我们可以看到实现后的效果,例如在海滩上,你可以看到波浪的起伏;在火车站,预测模型会预判火车行驶。然而,当要求预测某人如何穿过高尔夫球场时,结果看起来有些失真,图像也很模糊。

研究人员提到计算机的预测往往并不符合正常逻辑,但至少其对运动轨迹的判断是合理的。

机器学习系统在相关领域已经取得了许多进展,包括预测握手和拥抱等行为,甚至能够生成匹配视频的音频。Facebook 的 AI 部门负责人 Yann LeCun 在去年的一次采访中提到了这个话题,表示预判运动轨迹是开发预测计算机的重要一环。但是,要做到真正理解视频或图像,及其接下来可能发生的动作,还需要花费研究人员更多的精力。

“假如你正在看希区柯克的电影,这时我问,‘从现在开始的15分钟后,电影情节会发展成什么样子呢?’你此时就必须设法预判出凶手是谁。”

LeCun说:“要完全解决这个问题,就需要了解这个世界和人性,这才是真正的乐趣所在。”

人工智能在预测方面的能力已经越来越强,但要想做到更加准确、自然、符合实际的效果,还需要更加完善的模型。研究人员也许需要考虑更多的因素,建立更加复杂的神经网络,利用更多的数据集训练模型。只有这样,才有可能通过机器学习技术,真正实现对图像中的连续动作进行提前预判。

via The Verge

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-09-14

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据文摘

看视频就能学杂技,伯克利最新AI智能体

人类非常聪明,我们可以通过观察进行学习。无论是日常的洗手,还是惊人的杂技表演,对人类来说都是可以学习的。

772
来自专栏人工智能快报

科学家提出超越传统机器学习的量子算法

来自瑞士、英国和新加坡的科学家提出了一种新的量子算法,其进行数据分析的速度可超越传统机器学习算法,相关成果已发表在《物理评论快报》上。 计算机“思考”的一种方法...

2929
来自专栏新智元

Nature再发DeepMind研究:AI复现大脑网格细胞模拟导航!

1774
来自专栏新智元

Geoff Hinton 专访:Waston 系统和深度学习有什么区别?

关键词还没输入完毕,Google已经返回了你想要的搜索结果;Facebook能将你上传的照片自动打上标签;无人驾驶汽车都已经开上路了。这些所有令人觉得不可思议的...

3716
来自专栏人工智能快报

科学家提出超越传统机器学习的量子算法

1669
来自专栏计算机视觉战队

Deep Learning的展望

随着2017年的到来,深度学习技术也迎来了新的一年。深度学习是一门基于多层神经网络的技术,此项技术是许多颠覆性技术(如人工智能、认知计算、实时数据流分析等)的基...

3799
来自专栏数据科学与人工智能

机器学习与大数据风控

一个普遍的看法是,机器学习等人工智能技术会最先在金融领域落地。金融行业是最早实现信息化的行业,有丰富的数据积累,且对于用技术提升效率有更多的需求。 现在也有越来...

5048
来自专栏AI科技大本营的专栏

2017深度学习展望

---- 作者: James Kobielus 编译: AI100 原文地址: http://www.kdnuggets.com/2016/12/ibm-...

2535
来自专栏专知

【下载】Python迁移学习实战书籍和代码《Hands-On Transfer Learning with Python》

【导读】英特尔数据科学家Dipanjan Sarkar等人最新撰写的Python迁移学习实战书籍《Hands-On Transfer Learning with...

6025
来自专栏人工智能

Google Brain陈智峰:TensorFlow可以用来做什么?

2018 年 1 月 19 日,极客公园创新大会 IF 2018 在北京召开,Google Brain 首席工程师陈智峰分享了《寻找答案从定义问题开始——Ten...

2405

扫码关注云+社区

领取腾讯云代金券