前往小程序,Get更优阅读体验!
立即前往
首页
学习
活动
专区
工具
TVP
发布
社区首页 >专栏 >Tensorflow实践:用神经网络训练分类器

Tensorflow实践:用神经网络训练分类器

作者头像
用户1332428
发布2018-03-07 17:39:25
7450
发布2018-03-07 17:39:25
举报
文章被收录于专栏:人工智能LeadAI人工智能LeadAI

任务: 使用tensorflow训练一个神经网络作为分类器,分类的数据点如下:

螺旋形数据点

原理

数据点一共有三个类别,而且是螺旋形交织在一起,显然是线性不可分的,需要一个非线性的分类器。这里选择神经网络。

输入的数据点是二维的,因此每个点只有x,y坐标这个原始特征。这里设计的神经网络有两个隐藏层,每层有50个神经元,足够抓住数据点的高维特征(实际上每层10个都够用了)。最后输出层是一个逻辑回归,根据隐藏层计算出的50个特征来预测数据点的分类(红、黄、蓝)。

一般训练数据多的话,应该用随机梯度下降来训练神经网络,这里训练数据较少(300),就直接批量梯度下降了。

代码语言:javascript
复制
# 导入包、初始化
import numpy as np
import matplotlib.pyplot as plt
import tensorflow as tf  %matplotlib inline plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
plt.rcParams['image.interpolation'] = 'nearest'
plt.rcParams['image.cmap'] = 'gray
'# 生成螺旋形的线形不可分数据点
np.random.seed(0) N = 100 # 每个类的数据个数
D = 2 # 输入维度
K = 3 # 类的个数
X = np.zeros((N*K,D)) num_train_examples = X.shape[0] y = np.zeros(N*K, dtype='uint8')
for j in xrange(K):   ix = range(N*j,N*(j+1))   r = np.linspace(0.0,1,N) # radius   t = np.linspace(j*4,(j+1)*4,N) + np.random.randn(N)*0.2 # theta   X[ix] = np.c_[r*np.sin(t), r*np.cos(t)]   y[ix] = j fig = plt.figure() plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral) plt.xlim([-1,1]) plt.ylim([-1,1])

螺旋形数据点

打印输出输入X和label的shape

代码语言:javascript
复制
num_label = 3
labels = (np.arange(num_label) == y[:,None]).astype(np.float32) labels.shape
(300, 3)
X.shape
(300, 2)

用tensorflow构建神经网络

代码语言:javascript
复制
import math  N = 100 # 每个类的数据个数
D = 2 # 输入维度
num_label = 3 # 类的个数
num_data = N * num_label hidden_size_1 = 50
hidden_size_2 = 50
beta = 0.001 # L2 正则化系数
learning_rate = 0.1 # 学习速率
labels = (np.arange(num_label) == y[:,None]).astype(np.float32)  graph = tf.Graph()
with graph.as_default():     x = tf.constant(X.astype(np.float32))     tf_labels = tf.constant(labels)         # 隐藏层1     hidden_layer_weights_1 = tf.Variable(     tf.truncated_normal([D, hidden_size_1], stddev=math.sqrt(2.0/num_data)))     hidden_layer_bias_1 = tf.Variable(tf.zeros([hidden_size_1]))         # 隐藏层2     hidden_layer_weights_2 = tf.Variable(     tf.truncated_normal([hidden_size_1, hidden_size_2], stddev=math.sqrt(2.0/hidden_size_1)))     hidden_layer_bias_2 = tf.Variable(tf.zeros([hidden_size_2]))         # 输出层     out_weights = tf.Variable(     tf.truncated_normal([hidden_size_2, num_label], stddev=math.sqrt(2.0/hidden_size_2)))     out_bias = tf.Variable(tf.zeros([num_label]))          z1 = tf.matmul(x, hidden_layer_weights_1) + hidden_layer_bias_1     h1 = tf.nn.relu(z1)          z2 = tf.matmul(h1, hidden_layer_weights_2) + hidden_layer_bias_2     h2 = tf.nn.relu(z2)          logits = tf.matmul(h2, out_weights) + out_bias         # L2正则化     regularization = tf.nn.l2_loss(hidden_layer_weights_1) + tf.nn.l2_loss(hidden_layer_weights_2) + tf.nn.l2_loss(out_weights)     loss = tf.reduce_mean(         tf.nn.softmax_cross_entropy_with_logits(labels=tf_labels, logits=logits) + beta * regularization)           optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)          train_prediction = tf.nn.softmax(logits)      weights = [hidden_layer_weights_1, hidden_layer_bias_1, hidden_layer_weights_2, hidden_layer_bias_2, out_weights, out_bias]  

上一步相当于搭建了神经网络的骨架,现在需要训练。每1000步训练,打印交叉熵损失和正确率。

num_steps = 50000

def accuracy(predictions, labels): return (100.0 * np.sum(np.argmax(predictions, 1) == np.argmax(labels, 1)) / predictions.shape[0])def relu(x): return np.maximum(0,x)

with tf.Session(graph=graph) as session: tf.global_variables_initializer().run() print('Initialized')

for step in range(num_steps): _, l, predictions = session.run([optimizer, loss, train_prediction]) if (step % 1000 == 0): print('Loss at step %d: %f' % (step, l)) print('Training accuracy: %.1f%%' % accuracy( predictions, labels)) w1, b1, w2, b2, w3, b3 = weights

# 显示分类器 h = 0.02 x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) Z = np.dot(relu(np.dot(relu(np.dot(np.c_[xx.ravel(), yy.ravel()], w1.eval()) + b1.eval()), w2.eval()) + b2.eval()), w3.eval()) + b3.eval() Z = np.argmax(Z, axis=1) Z = Z.reshape(xx.shape) fig = plt.figure() plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral, alpha=0.8) plt.scatter(X[:, 0], X[:, 1], c=y, s=40, cmap=plt.cm.Spectral) plt.xlim(xx.min(), xx.max()) plt.ylim(yy.min(), yy.max())

Initialized

代码语言:javascript
复制
Loss at step 0: 1.132545
Training accuracy: 43.7%
Loss at step 1000: 0.257016
Training accuracy: 94.0%
Loss at step 2000: 0.165511
Training accuracy: 98.0%
Loss at step 3000: 0.149266
Training accuracy: 99.0%
Loss at step 4000: 0.142311
Training accuracy: 99.3%
Loss at step 5000: 0.137762
Training accuracy: 99.3%
Loss at step 6000: 0.134356
Training accuracy: 99.3%
Loss at step 7000: 0.131588
Training accuracy: 99.3%
Loss at step 8000: 0.129299
Training accuracy: 99.3%
Loss at step 9000: 0.127340
Training accuracy: 99.3%
Loss at step 10000: 0.125686
Training accuracy: 99.3%
Loss at step 11000: 0.124293
Training accuracy: 99.3%
Loss at step 12000: 0.123130
Training accuracy: 99.3%
Loss at step 13000: 0.122149
Training accuracy: 99.3%
Loss at step 14000: 0.121309
Training accuracy: 99.3%
Loss at step 15000: 0.120542
Training accuracy: 99.3%
Loss at step 16000: 0.119895
Training accuracy: 99.3%
Loss at step 17000: 0.119335
Training accuracy: 99.3%
Loss at step 18000: 0.118836
Training accuracy: 99.3%
Loss at step 19000: 0.118376
Training accuracy: 99.3%
Loss at step 20000: 0.117974
Training accuracy: 99.3%
Loss at step 21000: 0.117601
Training accuracy: 99.3%
Loss at step 22000: 0.117253
Training accuracy: 99.3%
Loss at step 23000: 0.116887
Training accuracy: 99.3%
Loss at step 24000: 0.116561
Training accuracy: 99.3%
Loss at step 25000: 0.116265
Training accuracy: 99.3%
Loss at step 26000: 0.115995
Training accuracy: 99.3%
Loss at step 27000: 0.115750
Training accuracy: 99.3%
Loss at step 28000: 0.115521
Training accuracy: 99.3%
Loss at step 29000: 0.115310
Training accuracy: 99.3%
Loss at step 30000: 0.115111
Training accuracy: 99.3%
Loss at step 31000: 0.114922
Training accuracy: 99.3%
Loss at step 32000: 0.114743
Training accuracy: 99.3%
Loss at step 33000: 0.114567
Training accuracy: 99.3%
Loss at step 34000: 0.114401
Training accuracy: 99.3%
Loss at step 35000: 0.114242
Training accuracy: 99.3%
Loss at step 36000: 0.114086
Training accuracy: 99.3%
Loss at step 37000: 0.113933
Training accuracy: 99.3%
Loss at step 38000: 0.113785
Training accuracy: 99.3%
Loss at step 39000: 0.113644
Training accuracy: 99.3%
Loss at step 40000: 0.113504
Training accuracy: 99.3%
Loss at step 41000: 0.113366
Training accuracy: 99.3%
Loss at step 42000: 0.113229
Training accuracy: 99.3%
Loss at step 43000: 0.113096
Training accuracy: 99.3%
Loss at step 44000: 0.112966
Training accuracy: 99.3%
Loss at step 45000: 0.112838
Training accuracy: 99.3%
Loss at step 46000: 0.112711
Training accuracy: 99.3%
Loss at step 47000: 0.112590
Training accuracy: 99.3%
Loss at step 48000: 0.112472
Training accuracy: 99.3%
Loss at step 49000: 0.112358
Training accuracy: 99.3%

分类器.png

本文参与 腾讯云自媒体分享计划,分享自微信公众号。
原始发表:2018-02-11,如有侵权请联系 cloudcommunity@tencent.com 删除

本文分享自 人工智能LeadAI 微信公众号,前往查看

如有侵权,请联系 cloudcommunity@tencent.com 删除。

本文参与 腾讯云自媒体分享计划  ,欢迎热爱写作的你一起参与!

评论
登录后参与评论
0 条评论
热度
最新
推荐阅读
领券
问题归档专栏文章快讯文章归档关键词归档开发者手册归档开发者手册 Section 归档