腾讯实时分析平台Hermes介绍

腾讯大数据最近做了几件事,上线了一个官方网站http://data.qq.com/,将TDW(腾讯大数据库仓库)开源了,封闭的企鹅难得开放了一回。大数据网站上有一些资料,我看到一个叫Hermes爱马仕的系统挺有意思的,今天介绍下。

关于实时分析系统我前面写个几篇文章分析,包括《实时分析系统(HIVE/HBASE/IMPALA)浅析》《MPP DB 是 大数据实时分析系统 未来的选择吗?》《一套数据,多种引擎(impala/Hive/kylin)》《一套数据,多种引擎续---两种数据格式(Parquet/ORCfile)浅析》有兴趣的可以看看,为了解决实时分析的问题,主要分析的是MPP架构的软件,核心思路是通过MPP扫描技术来加快查询。腾讯的Hermes系统,是开源的lucene演变而来,主要用的是搜索和索引技术,所以hermes也叫实时检索分析平台。这个是另外一个思路,可以值得看看。

详细的Hermes的介绍,可以看下本文最后参考资料。主要讲讲Hermes有特点的几个东西:

1、核心是存储的设计, 通过对数据结构的重新组织,结合分析系统的特点,实现嵌套列存储,充分避开随机读,采用块读取+位图计算大幅度降低耗时弊病,使大数据的统计分析计算耗时缩短至秒级;在词条文件中采用字典排序,并在此基础上实现前缀压缩;在序列文件中采用递增排序,并对序列号采用可变长类型,有效压缩存储空间,便于计算位图的构建;

2、列式存储.

3、基于单个实例数据的分析处理,datasource主要包含两类数据:用户导入的数据(位图文件)以及源数据(索引文件),内核主要根据用户请求逻辑处理索引文件以及位图文件。内核示意如下:

4、整个数据对应多份,按照不同规则均匀分布在各个分析实例中,数据的merge服务在其中的一个分片中进行,每次请求将根据机器负载情况选择负载轻的作为merge服务器。

Hermes和开源的solr,elasticsearch又有什么不同?

solr、es的使用特点如下:

1. 源自搜索引擎,侧重搜索与全文检索。

2. 数据规模从几百万到几千万不等,数据量过亿的集群特别少。 Ps:有可能存在个别系统数据量过亿,但这并不是普遍现象(就像oracle的表里的数据规模有可能超过hive里一样,但需要小型机)。

hermes:的使用特点如下:

1. 一个基于搜索引擎技术的海量数据实时检索分析平台。侧重数据分析。

2. 数据规模从几亿到几万亿不等。最小的表也是千万级别。

在腾讯12台机器,就可以处理每天350亿的数据(每条数据1kb左右),每台30T左右,数据可以保存一个月之久。

solr\es 更偏重于为小规模的数据提供全文检索服务;hermes则为大规模的数据仓库提供索引支持,为大规模数据仓库提供即席分析的解决方案,并降低数据仓库的成本,hermes数据量更“大”。

定位和数据规模的不同导致了hermes与solr、es的对索引使用方式有着本质的区别。下面从大数据的视角来阐述,为什么hermes更适合做大索引。

solr、es的索引严重依赖物理内存:

1. 一级跳跃表是完全load在内存中的,除了需要消耗很多内存,首次打开索引的加载速度会特别慢,在solr\es中的索引是一直处于打开状态的,不会频繁的打开与关闭;这种模式会制约一台机器的索引数量与索引规模,通常一台机器固定负责某个业务的索引。

2. 排序和统计(sum,max,min),是通过遍历倒排表,将某一列的全部值都load到内存里,然后基于内存数据进行统计即使一次查询只会用到其中的一条记录,也会将整列的全部值都load到内存里,台浪费资源,首次查询的性能太差。数据规模受物理内存限制很大,索引规模上千万后OOM是常事。

3. 索引存储在本地硬盘,出现异常后,因为数据要恢复,copy的时间要太久。

4. 支持master/slave模式,但是跟传统mysql数据库一样,集群规模并没有特别大的。

这种模式处理集群规模受限外,每次扩容的数据迁移将是一件非常痛苦的事情,数据迁移时间太久。

5. 倒排检索即使某个词语存在数据倾斜,因数据量比较小,也可以将全部的doclist都读取过来(比如说男、女),这个doclist会占用较大的内存进行cache,当然在数据规模较小的情况下占用内存不是特别多,查询命中率很高,会提升检索速度,但是数据规模上来后,这里的内存问题越来越严重。

6. Merger server只能是一个,制约了查询的节点数量;数据不能进行动态分区,数据规模上来后单个索引太大。

Hermes的索引特点如下:

1. 大部分的索引处于关闭状态,只有真正用到索引才会去打开;一级跳跃表采用按需load,并不会load整个跳跃表,用来节省内存和提高打开索引的速度。Hermes经常会根据业务的不同去动态的打开不同的索引,关闭那些不经常使用的索引,这样同样一台机器,可以被多种不同的业务所使用,机器利用率高。

2. 排序和统计并不会使用数据的真实值,而是通过标签技术将大数据转换成占用内存很小的数据标签,占用内存是原先的几十分之一。另外不会将这个列的全部值都load到内存里,而是用到哪些数据load哪些数据,依然是按需load。不用了的数据会从内存里移除。

3. 索引存储在hdfs中,理论上只要hdfs有空间,就可以不断的添加索引,索引规模不在严重受机器的物理内存和物理磁盘的限制。

4. 采用yarn进行进程管理,数据在hdfs中,集群规模和扩容都是一件很easy的事情。

5. 如果某个词语存在数据倾斜,则会与其他条件组合进行跳跃合并(参考doclist的skiplist资料)。

6. 采用多级的merger server;数据可以根据业务的不同,采用不同的分区方式。

参考资料:

1、关于hermes与solr,es的定位与区别 http://user.qzone.qq.com/165162897/2

2、Hermes实时检索分析平台 http://data.qq.com/article?id=817

原文发布于微信公众号 - 大数据和云计算技术(jiezhu2007)

原文发表时间:2014-12-13

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏牛客网

运维工程师养成实录:从确立目标到收获offer

作为一名渣硕,找工作陆陆续续从今年的三月份开始断断续续的刷一些题,看基础到八月份的猛攻阶段,到此,算是得到了一个不错的收获,也拿到了几个offer,算是对自己的...

87913
来自专栏杨建荣的学习笔记

一个跨平台数据迁移的方案优化

如果有一套环境,业务优先级很高,服务器的服役时间比我工作时间都长,现在需要迁移到X86平台,而且经过评估,如果能够升级数据库的软件版本,可以使用到更多的特...

3114
来自专栏架构师之路

就是这么迅猛的实现搜索需求

一、缘起 《深入浅出搜索架构(上篇)》详细介绍了: (1)全网搜索引擎架构与流程 (2)站内搜索引擎架构与流程 (3)搜索原理与核心数据结构 本文重点介绍: (...

3114
来自专栏一枝花算不算浪漫

[Java面试一]面试复习大纲.

3539
来自专栏Java职业技术分享

阿里如何实现秒级百万TPS?搜索离线大数据平台架构解读

导读:搜索离线数据处理是一个典型的海量数据批次/实时计算结合的场景,阿里搜索中台团队立足内部技术结合开源大数据存储和计算系统,针对自身业务和技术特点构建了搜索离...

1900
来自专栏Hongten

oracle系列--第一篇 数据库基础

1.1 数据管理概述 1.1.1 什么是数据管理 与我们人类相比,计算机的最大优势就是能够高速、精准地运行,其运行的过程就是执行程序代码和操作指令、处理数据...

1002
来自专栏Java帮帮-微信公众号-技术文章全总结

面试重点复习大纲

给Java新手的一些建议-面试指南 面试重要知识点复习大纲 一、Java基础部分 (笔试与面试都会有的) 1.数组中的排序问题(笔试或者机试,前者可能性...

3423
来自专栏沃趣科技

Oracle ASM神书《拨云见日 解密Oracle ASM内核》出版了

很高兴《拨云见日,解密Oracle ASM内核》(点击链接可申领书籍哦~)一书终于和大家见面了,我是这本书的组织者和主要译者之一,同时也负责了所有文章的技术审校...

1.3K51
来自专栏腾讯Bugly的专栏

【Dev Club分享】微信读书iOS性能优化

“8小时内拼工作,8小时外拼成长”这是大家共同的理想。除了每天忙于工作外,我们都希望能更多地区吸收领域内的新知识与新技能,从而走向人生巅峰。 Dev Club ...

3515
来自专栏更流畅、简洁的软件开发方式

根据实例说数据库设计(一)—— 人员管理

     说在前面      可能您会问,树的系列还差第三篇没有写呢,怎么就又说数据库设计了?因为如果写第三篇的话,那么就涉及到了权限,而权限里面又涉及到了人员...

4597

扫码关注云+社区