【直播】我的基因组58:用R包SNPRelate来对我的基因型跟hapmap计划数据比较

hapmap计划的人群分布结果和千人基因组计划的分布结果来分析是一样的!【直播】我的基因组55:简单的PCA分析千人基因组的人群分布

这两个计划里面收集的样本的种群信息都比较完善,而且每个样本的基因型信息很容易就下载了。

但是hapmap收集的样本要比千人基因组计划少一些,如下:

数据下载见前面的系列贴

mkdir -p ~/annotation/variation/human/hapmapcd ~/annotation/variation/human/hapmap# ftp://ftp.ncbi.nlm.nih.gov/hapmap/wget ftp://ftp.ncbi.nlm.nih.gov/hapmap/phase_3/relationships_w_pops_051208.txtnohup wget -c -r -np -k -L -p  -nd -A.gz ftp://ftp.ncbi.nlm.nih.gov/hapmap/phase_3/hapmap3_reformatted &

这样就得到了hapmap计划涉及到的所有样本的基因型文件。

然后再学一下SNPRelate的用法:

说明书还比较好读:http://corearray.sourceforge.net/tutorials/SNPRelate/

只有一个核心函数,就是用snpgdsPCA来对包含了GDS格式的基因型信息的文件做分析!

所以重点就是创建GDS格式的基因型文件!

有两种方式来创建GDS文件,被R包作者包装成了两个函数:分别是snpgdsCreateGeno和snpgdsVCF2GDS

其中snpgdsCreateGeno需要自己导入6个数据,比较复杂,第一个是genmat,每个样本在每个位点的基因型(0,1,2)矩阵,然后是sample.id(共279个)和snp.id(共1000个)看名字就知道是样本编号和位点的编号,然后是snp.chromosome和snp.position记录着那1000个snp位点的染色体及坐标信息,最后是snp.allele说明该位点是由什么突变到什么的。

而snpgdsVCF2GDS可以直接读取多样本的VCF文件,一般来说需要自己把多个样本的vcf文件合并成一个,稍微简单一点!

创建好的GDS文件,可以用openfn.gds,index.gdsn,read.gdsn,closefn.gds函数来操作,但是意义不大,我们只需要做PCA分析即可。

包说明书介绍的代码如下,我添加了注释,很简单就可以看懂!

data(hapmap_geno)## you need to create this data by yourself.# Create a gds filesnpgdsCreateGeno("test.gds", genmat = hapmap_geno$genotype,sample.id = hapmap_geno$sample.id, snp.id = hapmap_geno$snp.id,snp.chromosome = hapmap_geno$snp.chromosome,snp.position = hapmap_geno$snp.position,snp.allele = hapmap_geno$snp.allele, snpfirstdim=TRUE)# Open the GDS file(genofile <- snpgdsOpen("test.gds"))## 需要详细理解 genofile 这个对象里面包含的数据内容RV <- snpgdsPCA(genofile, num.thread=2)## 做PCA分析的时候不需要样本的种群信息,但是画图的时候需要,可以看看聚类是否符合认知。pop <- read.gdsn(index.gdsn(genofile,path="sample.annot/pop.group"))## 如果你没有在 snpgdsCreateGeno 里面添加 sample.anno详细,那么上面这个代码是无效的,不过你可以直接赋值pop,就是一个向量,指明你的sample.id(共279个)所属种群即可。plot(RV$eigenvect[,2], RV$eigenvect[,1],col=as.integer(factor(pop)),xlab="PC 2", ylab="PC 1")legend("topleft", legend=levels(factor(pop)), pch="o", col=1:4)

我就基于前面对千人基因组计划数据的探索来使用这个包:

根据我对这个包的学习,目前我只有我挑选的snp位点的dbSNP的ID,并没有保留它们的染色体坐标以及突变形式,我需要重新再写个程序,支持直接去dbSNP数据库里面搜索即可。

zcat ~/annotation/variation/human/dbSNP/All_20160601.vcf.gz |perl -alne 'BEGIN{open FH,"/home/jianmingzeng/biosoft/fastpop/FastPop/snp.txt";while(<FH>){chomp;$h{$_}=1};close FH}{print "$F[2]\t$F[0]\t$F[1]\t$F[3]/$F[4]" if exists $h{$F[2]}}' >fastpop.dbSNP

还是挑选前面的fastpop软件的那两千多个位点吧!就对上面下载的数据进行批量处理:

ls ~/annotation/variation/human/hapmap/*gz |while read iddoecho $idfile=$(basename $id )pop=${file%%.*}zcat $id |perl -alne 'BEGIN{open FH,"/home/jianmingzeng/biosoft/fastpop/FastPop/snp.txt";while(<FH>){chomp;$h{$_}=1};close FH}{print join("\t",$F[0],@F[11..$#F]) if exists $h{$F[0]}}' >$pop.choose.genotypedone

生成了11个种群的genotype文件,然后用下面的R代码处理。

listFiles=list.files("./","*genotype")ASW <- read.table(listFiles[1],stringsAsFactors = F);ASW[1:4,1:4]sample_list<-paste("ASW",1:(ncol(ASW)-1),sep = '_')pop <- rep("ASW",ncol(ASW)-1)for (f in listFiles[2:length(listFiles)] ){this_pop=strsplit(f,'\\.')[[1]][1];tmp <- read.table( f ,stringsAsFactors = F);tmp[1:4,1:4]pop <- c(pop,rep(this_pop,ncol(tmp)-1))sample_list<-c(sample_list,paste(this_pop,1:(ncol(tmp)-1),sep = '_'))ASW <- merge(ASW,tmp,by='V1')}exprSet <- ASWcolnames(exprSet)=c('rsID',sample_list)exprSet[1:4,1:4]snp_info=read.table('fastpop.dbSNP',stringsAsFactors = F)head(snp_info)snp_info <- snp_info[match(as.character(exprSet$rsID),snp_info[,1]),]genotype <- exprSet[,-1]genotype <- apply(genotype,1,function(x){as.numeric(as.factor(x))})genotype <- t(genotype)-1dim(genotype);genotype[1:4,1:4]library(gdsfmt)library(SNPRelate)data(hapmap_geno)# Create a gds filesnpgdsCreateGeno("hapmap.gds", genmat = genotype,sample.id = as.character(sample_list), snp.id = as.character(exprSet[,1]),snp.chromosome = snp_info[,2],snp.position = snp_info[,3],snp.allele = snp_info[,4], snpfirstdim=TRUE)# Open the GDS file(genofile <- snpgdsOpen("hapmap.gds"))table(pop);super_pop=poptable(super_pop)RV <- snpgdsPCA(genofile, num.thread=2)pc.percent <- RV$varprop*100head(round(pc.percent, 2))plot(RV$eigenvect[,2], RV$eigenvect[,1], col=as.integer(factor(super_pop)),xlab="PC 2", ylab="PC 1")legend("bottomleft", y.intersp=0.3,legend=levels(factor(super_pop)), pch="o", col=1:length(super_pop))# close the genotype fileclosefn.gds(genofile)

人种太多了,上色就很麻烦,我也懒得把我自己的基因型放进去了,比较千人基因组计划的分析结果挺好的。

这个hapmap首先基因型就是通过芯片得到的,准确性没有千人基因组计划的测序数据好。

参考文献:

http://www.stat-gen.org/tut/tut_preproc.html

https://wurmlab.github.io/genomicscourse/2016-SIB/practicals/population_genetics/popgen

原文发布于微信公众号 - 生信技能树(biotrainee)

原文发表时间:2017-02-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏贾志刚-OpenCV学堂

重磅发布 | OpenCV 4.0正式来了

三天前OpenCV通过GITHUB正式发布了OpenCV又一个重要里程碑版本OpenCV 4.0。

2043
来自专栏iOSDevLog

ARKit示例 - 第3部分:添加几何和物理乐趣

在上一篇文章中,我们使用ARKit来检测现实世界中的水平平面,然后将这些平面可视化。在本文中,我们现在将开始为我们的AR体验添加虚拟内容,并开始与检测到的平面进...

1091

基因组分析工具包:Apache Spark

自2000年人类基因组计划(Human Genome Project)产生人类基因组首份草案序列以来,测序成本从几乎每个基因组的1亿美元左右急剧下降到今天的约1...

4866
来自专栏Golang语言社区

有限状态机FSM的原理与GO的实现

有限状态机(Finite-state machine, 简写FSM)又可以称作有限状态自动机。它必须是可以附着在某种事物上的,且该事物的状态是有限的,通过某些触...

5367
来自专栏生信技能树

参考基因组没有,经费也没那么多,怎么办?

尽管目前已经有大量物种基因组释放出来,但还是存在许多物种是没有参考基因组。使用基于酶切的二代测序技术,如RAD-seq,GBS,构建遗传图谱是研究无参考物种比较...

3917
来自专栏BGP专栏

BGP电路详解(上)

1.把匹配器件相互靠近放置  (共OD/Poly/OD space/Poly space一致)

1890
来自专栏生信宝典

分子对接简明教程 (一)

分子对接(Molecular Docking)理论 所谓分子对接就是两个或多个分子之间通过几何匹配和能量匹配相互识别找到最佳匹配模式的过程。分子对接对酶学研究和...

58610
来自专栏编程微刊

Highcharts使用的一些总结

Highcharts 是一个用纯 JavaScript 编写的一个图表库, 能够很简单便捷的在 Web 网站或是 Web 应用程序添加有交互性的图表,并且免费提...

631
来自专栏生信技能树

你以为的可能不是你以为的

最近生信技能树管理员小朋友XZG跟我炫耀他植物的简化基因组的gvcf模式,两百个测序数据,我一直没用过这个gvcf功能,因为的确没有需求。癌症研究,关注的主要是...

1204
来自专栏生信宝典

分子对接简明教程 (三)

Docking非原生配体 在前面的例子中,AutoDock Vina能把配体构象调整到几乎原生的构象,验证了这一预测方法的准确度。下面,我们尝试docking另...

6339

扫码关注云+社区