【直播】我的基因组58:用R包SNPRelate来对我的基因型跟hapmap计划数据比较

hapmap计划的人群分布结果和千人基因组计划的分布结果来分析是一样的!【直播】我的基因组55:简单的PCA分析千人基因组的人群分布

这两个计划里面收集的样本的种群信息都比较完善,而且每个样本的基因型信息很容易就下载了。

但是hapmap收集的样本要比千人基因组计划少一些,如下:

数据下载见前面的系列贴

mkdir -p ~/annotation/variation/human/hapmapcd ~/annotation/variation/human/hapmap# ftp://ftp.ncbi.nlm.nih.gov/hapmap/wget ftp://ftp.ncbi.nlm.nih.gov/hapmap/phase_3/relationships_w_pops_051208.txtnohup wget -c -r -np -k -L -p  -nd -A.gz ftp://ftp.ncbi.nlm.nih.gov/hapmap/phase_3/hapmap3_reformatted &

这样就得到了hapmap计划涉及到的所有样本的基因型文件。

然后再学一下SNPRelate的用法:

说明书还比较好读:http://corearray.sourceforge.net/tutorials/SNPRelate/

只有一个核心函数,就是用snpgdsPCA来对包含了GDS格式的基因型信息的文件做分析!

所以重点就是创建GDS格式的基因型文件!

有两种方式来创建GDS文件,被R包作者包装成了两个函数:分别是snpgdsCreateGeno和snpgdsVCF2GDS

其中snpgdsCreateGeno需要自己导入6个数据,比较复杂,第一个是genmat,每个样本在每个位点的基因型(0,1,2)矩阵,然后是sample.id(共279个)和snp.id(共1000个)看名字就知道是样本编号和位点的编号,然后是snp.chromosome和snp.position记录着那1000个snp位点的染色体及坐标信息,最后是snp.allele说明该位点是由什么突变到什么的。

而snpgdsVCF2GDS可以直接读取多样本的VCF文件,一般来说需要自己把多个样本的vcf文件合并成一个,稍微简单一点!

创建好的GDS文件,可以用openfn.gds,index.gdsn,read.gdsn,closefn.gds函数来操作,但是意义不大,我们只需要做PCA分析即可。

包说明书介绍的代码如下,我添加了注释,很简单就可以看懂!

data(hapmap_geno)## you need to create this data by yourself.# Create a gds filesnpgdsCreateGeno("test.gds", genmat = hapmap_geno$genotype,sample.id = hapmap_geno$sample.id, snp.id = hapmap_geno$snp.id,snp.chromosome = hapmap_geno$snp.chromosome,snp.position = hapmap_geno$snp.position,snp.allele = hapmap_geno$snp.allele, snpfirstdim=TRUE)# Open the GDS file(genofile <- snpgdsOpen("test.gds"))## 需要详细理解 genofile 这个对象里面包含的数据内容RV <- snpgdsPCA(genofile, num.thread=2)## 做PCA分析的时候不需要样本的种群信息,但是画图的时候需要,可以看看聚类是否符合认知。pop <- read.gdsn(index.gdsn(genofile,path="sample.annot/pop.group"))## 如果你没有在 snpgdsCreateGeno 里面添加 sample.anno详细,那么上面这个代码是无效的,不过你可以直接赋值pop,就是一个向量,指明你的sample.id(共279个)所属种群即可。plot(RV$eigenvect[,2], RV$eigenvect[,1],col=as.integer(factor(pop)),xlab="PC 2", ylab="PC 1")legend("topleft", legend=levels(factor(pop)), pch="o", col=1:4)

我就基于前面对千人基因组计划数据的探索来使用这个包:

根据我对这个包的学习,目前我只有我挑选的snp位点的dbSNP的ID,并没有保留它们的染色体坐标以及突变形式,我需要重新再写个程序,支持直接去dbSNP数据库里面搜索即可。

zcat ~/annotation/variation/human/dbSNP/All_20160601.vcf.gz |perl -alne 'BEGIN{open FH,"/home/jianmingzeng/biosoft/fastpop/FastPop/snp.txt";while(<FH>){chomp;$h{$_}=1};close FH}{print "$F[2]\t$F[0]\t$F[1]\t$F[3]/$F[4]" if exists $h{$F[2]}}' >fastpop.dbSNP

还是挑选前面的fastpop软件的那两千多个位点吧!就对上面下载的数据进行批量处理:

ls ~/annotation/variation/human/hapmap/*gz |while read iddoecho $idfile=$(basename $id )pop=${file%%.*}zcat $id |perl -alne 'BEGIN{open FH,"/home/jianmingzeng/biosoft/fastpop/FastPop/snp.txt";while(<FH>){chomp;$h{$_}=1};close FH}{print join("\t",$F[0],@F[11..$#F]) if exists $h{$F[0]}}' >$pop.choose.genotypedone

生成了11个种群的genotype文件,然后用下面的R代码处理。

listFiles=list.files("./","*genotype")ASW <- read.table(listFiles[1],stringsAsFactors = F);ASW[1:4,1:4]sample_list<-paste("ASW",1:(ncol(ASW)-1),sep = '_')pop <- rep("ASW",ncol(ASW)-1)for (f in listFiles[2:length(listFiles)] ){this_pop=strsplit(f,'\\.')[[1]][1];tmp <- read.table( f ,stringsAsFactors = F);tmp[1:4,1:4]pop <- c(pop,rep(this_pop,ncol(tmp)-1))sample_list<-c(sample_list,paste(this_pop,1:(ncol(tmp)-1),sep = '_'))ASW <- merge(ASW,tmp,by='V1')}exprSet <- ASWcolnames(exprSet)=c('rsID',sample_list)exprSet[1:4,1:4]snp_info=read.table('fastpop.dbSNP',stringsAsFactors = F)head(snp_info)snp_info <- snp_info[match(as.character(exprSet$rsID),snp_info[,1]),]genotype <- exprSet[,-1]genotype <- apply(genotype,1,function(x){as.numeric(as.factor(x))})genotype <- t(genotype)-1dim(genotype);genotype[1:4,1:4]library(gdsfmt)library(SNPRelate)data(hapmap_geno)# Create a gds filesnpgdsCreateGeno("hapmap.gds", genmat = genotype,sample.id = as.character(sample_list), snp.id = as.character(exprSet[,1]),snp.chromosome = snp_info[,2],snp.position = snp_info[,3],snp.allele = snp_info[,4], snpfirstdim=TRUE)# Open the GDS file(genofile <- snpgdsOpen("hapmap.gds"))table(pop);super_pop=poptable(super_pop)RV <- snpgdsPCA(genofile, num.thread=2)pc.percent <- RV$varprop*100head(round(pc.percent, 2))plot(RV$eigenvect[,2], RV$eigenvect[,1], col=as.integer(factor(super_pop)),xlab="PC 2", ylab="PC 1")legend("bottomleft", y.intersp=0.3,legend=levels(factor(super_pop)), pch="o", col=1:length(super_pop))# close the genotype fileclosefn.gds(genofile)

人种太多了,上色就很麻烦,我也懒得把我自己的基因型放进去了,比较千人基因组计划的分析结果挺好的。

这个hapmap首先基因型就是通过芯片得到的,准确性没有千人基因组计划的测序数据好。

参考文献:

http://www.stat-gen.org/tut/tut_preproc.html

https://wurmlab.github.io/genomicscourse/2016-SIB/practicals/population_genetics/popgen

原文发布于微信公众号 - 生信技能树(biotrainee)

原文发表时间:2017-02-18

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏张善友的专栏

LINQ via C# 系列文章

LINQ via C# Recently I am giving a series of talk on LINQ. the name “LINQ via C...

2665
来自专栏转载gongluck的CSDN博客

cocos2dx 打灰机

#include "GamePlane.h" #include "PlaneSprite.h" #include "BulletNode.h" #include...

5556
来自专栏张善友的专栏

Silverlight + Model-View-ViewModel (MVVM)

     早在2005年,John Gossman写了一篇关于Model-View-ViewModel模式的博文,这种模式被他所在的微软的项目组用来创建Expr...

2988
来自专栏陈仁松博客

ASP.NET Core 'Microsoft.Win32.Registry' 错误修复

今天在发布Asp.net Core应用到Azure的时候出现错误InvalidOperationException: Cannot find compilati...

4868
来自专栏落花落雨不落叶

canvas画简单电路图

63111
来自专栏张善友的专栏

Mix 10 上的asp.net mvc 2的相关Session

Beyond File | New Company: From Cheesy Sample to Social Platform Scott Hansel...

2587
来自专栏跟着阿笨一起玩NET

c#实现打印功能

2802
来自专栏杨龙飞前端

scrollto 到指定位置

2524
来自专栏Ceph对象存储方案

Luminous版本PG 分布调优

Luminous版本开始新增的balancer模块在PG分布优化方面效果非常明显,操作也非常简便,强烈推荐各位在集群上线之前进行这一操作,能够极大的提升整个集群...

3185
来自专栏闻道于事

js登录滑动验证,不滑动无法登陆

js的判断这里是根据滑块的位置进行判断,应该是用一个flag判断 <%@ page language="java" contentType="text/html...

6948

扫码关注云+社区