生信编程直播第七题:写超几何分布检验!

下载数据

切换到工作目录:cd d/生信技能树-视频直播/第七讲

  • kegg2gene(第六讲kegg数据解析结果) 暂时不用新的kegg注释数据为了能够统一答案
  • 差异基因list和背景基因list
关于背景基因
  • 收集一 凡是富集分析,都要有背景和选择集 有参的,那就找参考对应的注释信息,作为背景 无参的,那就自己注释,得到背景
  • 收集二 其实pathway富集分析本身也只是提供一些参考,并非非要富集不可。因为某些pathway的调控,基因直接并非相互调控,而是共同参与某个产物合成过程中的不同步骤。例如,某代谢性物X的合成,需要合成酶 A、B、C、D 四个合成步骤。那么A表达的变化,并不会直接影响B、C、D基因的表达,只是影响代谢物X的合成量。如果没有富集到,你就当这个是基因注释了,讨论这些落在你感兴趣的pathway中的基因,也是一种策略。
题目要求

利用超几何分布检验自己写代码来完成主流的GO/KEGG的富集分析,得到与以下一致的结果:

超几何分布

超几何分布是统计学上一种离散概率分布。它描述了由有限个物件中抽出n个物件,成功抽出指定种类的物件的次数(不归还)。称为超几何分布,是因为其形式与“超几何函数”的级数展式的系数有关。

基因Pathway和GO富集分析

基因富集分析是分析基因表达信息的一种方法,富集是指将基因按照先验知识,也就是基因组注释信息进行分类。 通过差异基因的Pathway富集分析,可以找到富集的差异基因的Pathway,寻找不同样品的差异基因可能与哪些细胞通路的改变相关。 通过对差异基因的GO富集分析,可以找到富集的差异基因GO项,寻找不同样品的差异基因可能与哪些基因功能的改变相关。 对差异基因进行GO和Pathway富集分析后,再进行Network构建,定位基因的功能和其参与的信号通路,并进行清晰直观的展示。

  • GO富集分析: Gene Ontology(简称GO)是一个国际标准化的基因功能分类体系,提供了一套动态更新的标准词汇表(controlled vocabulary)来全面描述生物体中基因和基因产物的属性。GO总共有三个ontology(本体),分别描述基因的分子功能(molecular function)、细胞组分(cellular component)、参与的生物过程(biological process)。GO的基本单位是term(词条、节点),每个term都对应一个属性。 GO功能分析一方面给出差异表达基因的GO功能分类注释;另一方面给出差异表达基因的GO功能显著性富集分析。 首先,我们将差异表达基因向GO数据库(http://www.geneontology.org/)的各term映射,并计算每个term的基因数,从而得到具有某个GO功能的基因列表及基因数目统计。然后应用超几何检验,找出与整个基因组背景相比,在差异表达基因中显著富集的GO条目。

其中,N为所有Unigene中具有GO注释的基因数目;n为N中差异表达基因的数目;M为所有Unigene中注释为某特定GO term的基因数目;m为注释为某特定GO term的差异表达基因数目。计算得到的pvalue通过FDR校正之后,以corrected-pvalue≤0.05为阈值,满足此条件的GO term定义为在差异表达基因中显著富集的GO term。

  • KEGG富集分析: Pathway显著性富集分析以KEGG Pathway为单位,应用超几何检验,找出与整个基因组背景相比,在差异表达基因中显著性富集的Pathway。 该假设检验的p-value计算公式同GO功能显著性富集分析的相同,在这里N为所有Unigene中具有Pathway注释的基因数目;n为N中差异表达基因的数目;M为所有Unigene中注释为某特定Pathway的基因数目;m为注释为某特定Pathway的差异表达基因数目。
超几何分布检验的富集分析

一般做完超几何概率分布,对得到的p值进行校正;

原文发布于微信公众号 - 生信技能树(biotrainee)

原文发表时间:2017-03-02

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

ECCV 2018 | UBC&腾讯AI Lab提出首个模块化GAN架构,搞定任意图像PS组合

作者:Bo Zhao、Bo Chang、Zequn Jie、Leonid Sigal

591
来自专栏专知

【干货】Python机器学习项目实战2——模型选择,超参数调整和评估(附代码)

1602
来自专栏AI科技大本营的专栏

干货 | YJango的卷积神经网络——介绍

作者 | YJango 整理 | AI科技大本营(rgznai100) 原文 - https://zhuanlan.zhihu.com/p/27642620 P...

2886
来自专栏大数据文摘

机器都会学习了,你的神经网络还跑不动?来看看这些建议

在很多机器学习的实验室中,机器已经进行了上万小时的训练。在这个过程中,研究者们往往会走很多弯路,也会修复很多bug,但可以肯定的是,在机器学习的研究过程中,学到...

880
来自专栏小石不识月

深度学习解决文本分类问题的最佳实践

文本分类(Text classification)描述了一类常见的问题,比如预测推文(Tweets)和电影评论的情感,以及从电子邮件中区分出垃圾邮件。

3758
来自专栏量子位

在Keras+TF环境中,用迁移学习和微调做专属图像识别系统

图1:CompCars数据集的示例图像,整个数据集包含163家汽车制造商,1713种车型 王小新 编译自 Deep Learning Sandbox 量子位 出...

3355
来自专栏AI科技大本营的专栏

详解计算机视觉五大技术:图像分类、对象检测、目标跟踪、语义分割和实例分割

译者 | 王柯凝 【 AI 科技大本营导读】目前,计算机视觉是深度学习领域最热门的研究领域之一。计算机视觉实际上是一个跨领域的交叉学科,包括计算机科学(图形、算...

7347
来自专栏大数据挖掘DT机器学习

用交叉验证改善模型的预测表现(适用于Python和R)

原文作者: Sunil Ray 翻译:王鹏宇 我一直对数据界的编程马拉松(Hackathons)保持关注。通过对比排名榜初期和最终的结果, 我发现了一个有趣的现...

3126
来自专栏深度学习

机器学习常用神经网络架构和原理

一、为什么需要机器学习? 有些任务直接编码较为复杂,我们不能处理所有的细微之处和简单编码,因此,机器学习很有必要。相反,我们向机器学习算法提供大量数据,让算法不...

3047
来自专栏集智的专栏

使用腾讯云 GPU 学习深度学习系列之六:物体的识别与定位

本文以如何识别马路上的行人、车辆为主题,介绍了基于 Tensorflow 的 SSD 模型如何应用在物体识别定位项目中。

1.3K12

扫码关注云+社区