谷歌开放的TensorFlow Object Detection API 效果如何?对业界有什么影响?

熟悉TensorFlow的人都知道,tf在Github上的主页是: https://github.com/tensorflow , 然后这个主页下又有两个比较重要的repo(看star数就知道了),分别是TensorFlow的源代码repo:tensorflow/tensorflow,还有一个tensorflow/models。

后者tensorflow/models是Google官方用TensorFlow做的各种各样的模型,相当于示例代码,比如用于图像分类的Slim,深度文字OCR,以及用于NLP任务的句法分析模型syntaxnet,Seq2Seq with Attention等等等等。这次公布的Object Detection API同样是放在了tensorflow/models里。

再来说下这次公布的代码的实现方式。首先,对于目标检测这个任务来说,前面必须有一个像样的ImageNet图像分类模型来充当所谓的特征提取(Feature Extraction)层,比如VGG16、ResNet等网络结构。TensorFlow官方实现这些网络结构的项目是TensorFlow Slim,而这次公布的Object Detection API正是基于Slim的。Slim这个库公布的时间较早,不仅收录了AlexNet、VGG16、VGG19、Inception、ResNet这些比较经典的耳熟能详的卷积网络模型,还有Google自己搞的Inception-Resnet,MobileNet等。

我们在TensorFlow Object Detection API的官方安装指南中,可以看到这样一句代码:

很显然,这就是钦点用Slim作特征抽取了。

另外,以Faster RCNN为例,之前在github上,可以找到各种各样非官方的TensorFlow实现,但是这些实现使用的特征抽取层都不是Slim,而是五花八门的什么都有,另外一方面实现代码大量copy自原始的caffe的实现,这次公布的代码里已经一点也找不到原始caffe实现的痕迹了。

最后,原来非官方的Object Detection实现的质量参差不齐,去年我调过一个Faster RCNN,过程比较痛苦,在运行之前疯狂debug了三天才勉强跑了起来。这次Google官方公布的Object Detection API别的不说,代码质量肯定是过的去的,因此以后应该不会有人再造TensorFlow下Faster RCNN、R-FCN、SSD的轮子了。

说完了代码,再简单来说下公布的模型。主要公布了5个在COCO上训练的网络。网络结构分别是SSD+MobileNet、SSD+Inception、R-FCN+ResNet101、Faster RCNN+ResNet101、Faster RCNN+Inception_ResNet。后期应该还会有更多的模型加入进来。

最后,给新手朋友提供一个可以跑出官方Demo效果的小教程,非常简单,用5分钟的时间就可以跑一遍感受一下,只要安装了TensorFlow就可以,有没有GPU都无所谓。

安装或升级protoc

首先需要安装或升级protoc,不然在后面会无法编译。

安装/升级的方法是去protobuf的Release界面:google/protobuf,下载对应的已经编译好的protoc。

比如我是64位的ubuntu,那么就下载protoc-3.3.0-linux-x86_64.zip。下载解压后会有一个protoc二进制文件,覆盖到对应目录即可(如果不放心的可以用cp /usr/bin/protoc ~/protoc_bak先备份一下):

下载代码并编译

下载tensorflow/models的代码:

进入到models文件夹,编译Object Detection API的代码:

运行notebook demo

在models文件夹下运行:

访问文件夹object_detection,运行object_detection_tutorial.ipynb:

依次shift+enter运行到底就行了。这个Demo会自动下载并执行最小最快的模型ssd+mobilenet。

最后的检测效果,一张是汪星人图片:

还有一张是海滩图片:

使用自己的图片做检测

如果要检测自己的图片,那么更改TEST_IMAGE_PATHS为自己的图片路径就可以了。这里我随便选了一张COCO数据集中的图片:

检测结果:

使用其他模型做检测

一共公布了5个模型,上面我们只是用最简单的ssd + mobilenet模型做了检测,如何使用其他模型呢?找到Tensorflow detection model zoo,根据里面模型的下载地址,我们只要分别把MODEL_NAME修改为以下的值,就可以下载并执行对应的模型了:

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-08-19

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Unity Shader

Shader初学笔记:一种三维等值线的算法

把反距离加权算法转换到三维空间,是不是很方便的算出三维空间下的等值线了呢,再结合Shatter Toolkit插件进行剖切,修改修改代码。应该可以解决地层模型任...

49918
来自专栏大数据挖掘DT机器学习

tensorflow LSTM + CTC实现端到端OCR

本文github源码地址: 在公众号 datadw 里 回复 OCR 即可获取。 最近在做OCR相关的东西,关于OCR真的是有悠久了历史了,最开始用tes...

1.1K3
来自专栏CSDN技术头条

Hadoop 2.0 上深度学习的解决方案

波士顿的数据科学团队正在利用尖端工具和算法来优化商业活动,且这些商业活动是基于对用户数据中的深刻透析。数据科学大量使用机器算法,可以帮助我们在数据中识别和利用模...

2648
来自专栏数据派THU

独家 | 教你使用Keras on Google Colab(免费GPU)微调深度神经网络

在CPU上训练深度神经网络很困难。本教程将指导您如何使用Google Colaboratory上的Keras微调VGG-16网络,这是一个免费的GPU云平台。如...

3461
来自专栏机器之心

教程 | 在Cloud ML Engine的TPU上从头训练ResNet

张量处理单元(TPU)是能够大大加快深度学习模型训练速度的硬件加速器。在斯坦福大学进行的独立测试中,在 TPU 上训练的 ResNet-50 模型能够在 Ima...

1322
来自专栏程序员的知识天地

10分钟掌握Python-机器学习小项目

而且,Python 还有很多模块和程序库供我们选择,从而针对一个任务能有很多个解决方案。怎么样,听起来还是很厉害的吧?

981
来自专栏机器之心

世界上最好的语言PHP:我也可以用OpenCV搞计算机视觉

就像许多开发人员一样,我也经常使用别人的工作成果(Medium 上的文章、GitHub 上的代码等),因此也很乐意与社区分享我的成果。写文章不仅是对社区的一种回...

1533
来自专栏人工智能头条

Hadoop 2.0 上深度学习的解决方案

1133
来自专栏AI研习社

手把手教你搭建能够实现 Prisma 风格迁移效果的 iOS 酷炫应用(附代码)

随着 2012 年深度神经网络在 ImageNetchallenge 比赛上以 AlexNet 模型获胜,深度神经网络开创了空前的高潮。AI 工程师已经将深度学...

1583
来自专栏AI研习社

使用 SKIL 和 YOLO 构建产品级目标检测系统

在本文中,我们采用最新的神经网络实现目标检测,使用SKIL平台构建产品级目标检测系统。

1041

扫码关注云+社区