pytorch入门教程 | 第一章:Tensor

1 pytorch安装

安装pytorch之前,需要安装好python,还没安装过python的宝宝请先移步到廖雪峰的python教程,待安装熟悉完之后,再过来这边。

我们接着讲。

打开pytorch官网http://pytorch.org,找到下图所示位置

如图所示,选择好系统,包管理工具,python的版本,是否支持CUDA。

选择好相应的配置,然后就可以复制下面“Run this command”的代码,直接打开命令台粘贴运行,即完成pytorch的安装。

2

pytorch的基石--Tensor张量

要介绍Tensor这个数据类型,我觉得有必要扯一下数学。

我们都知道:

标量(Scalar)是只有大小,没有方向的量,如1,2,3等

向量(Vector)是有大小和方向的量,其实就是一串数字,如(1,2)

矩阵(Matrix)是好几个向量拍成一排合并而成的一堆数字,如[1,2;3,4]

如图,我们可以看出,矩阵是二维的,向量是一维的,标量是零维的。

那么张量(Tensor)是什么呢?呵呵呵呵!大家估计也能猜出来!是按照三维排列的一堆数字?

是的。但是也不完全正确。

其实标量,向量,矩阵它们三个也是张量,标量是零维的张量,向量是一维的张量,矩阵是二维的张量。

张量就是按照任意维排列的一堆数字的推广。如图所示,矩阵不过是三维张量下的一个二维切面。要找到三维张量下的一个标量,需要三个维度的坐标来定位。

除此之外,张量还可以是四维的、五维的、。。。等等

数学扯完了,我们撸串代码操练操练 

>>>import torch #引用torch包 >>>x = torch.Tensor(2,3) #构造一个2x3的矩阵,没初始化但仍然会有值 >>>x 8.0118e+28 4.5768e-41 8.0118e+28 4.5768e-41 2.9747e-37 1.4013e-45 [torch.FloatTensor of size 2x3] #可以看出数据类型是浮点数的2x3矩阵

看矩阵看不出张量的道道,我们来点刺激的

>>>y=torch.Tensor(4,2,3) #构造一个4x2x3的张量,没初始化 >>>y (0 ,.,.) = 1.00000e-29 * 0.0000 2.5244 0.0000 2.5244 0.0000 0.0000 (1 ,.,.) = 1.00000e-29 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (2 ,.,.) = 1.00000e-29 * 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 (3 ,.,.) = 1.00000e-29 * 0.0000 0.0000 0.0000 2.5244 0.0000 2.5244 [torch.FloatTensor of size 4x2x3]

我们从上面的返回值可以看出,4x2x3的张量y由4个2x3的矩阵构成,这符合了我们数学上的定义。

3

Tensor的加法(四种)

我们先初始化两个张量:

rand()用随机数初始化5x3的矩阵

第一种:

>>>a+b

第二种:

>>>torch.add(a,b)

第三种:

>>>result = torch.Tensor(5,3) >>>torch.add(a,b,out=result) #把运算结果存储在result上

第四种:

>>>b.add_(a) #把运算结果覆盖掉b

4

Tensor的部分截取

利用b[:,1]来截取第2列的所有元素(计算机是从0开始数,所以1是第2列)

5

Tensor的其他操作

除了加法以外,还有上百种张量的操作,比如说转置(transposing),切片(slicing)等。

6

Tensor与numpy的Array的相互转换

torch的tensor可以与numpy的array进行转换

1.tensor⇒array

>>>b = a.numpy() #a为tensor

如图所示,b和a是共用一块内存,所以当a发生变化时,b也会发生变化。

2.array⇒tensor

>>>b = torch.from_numpy(a) #a为numpy的array

如图所示,a和b一样是共用一块内存。

7

CUDA的神助攻

假如少侠你有一块nvidia的显卡并支持cuda(如GTX 1080),那么恭喜你,你可以使用显卡gpu进行tensor的运算。

>>>torch.cuda.is_available() #看看是否支持cuda

假如返回的是True那么,下面的代码将带你飞。

>>>x = x.cuda() >>>y = y.cuda() >>>x+y #这里的x和y都是tensor,使用cuda函数以后,x和y的所有运算均会调用gpu来运算。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-09-01

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏小鹏的专栏

01 TensorFlow入门(1)

tensorflow_cookbook--第1章 TensorFlow入门         Google的TensorFlow引擎具有独特的解决问题的方法。 ...

20810
来自专栏机器学习算法全栈工程师

从0 到1 实现YOLO v3(part two)

本部分是 从0到1 实现YOLO v3 的第二部分 的第二部分,前两部分主要介绍了YOLO的工作原理,包含的模块的介绍以及如何用pytorch搭建完整的YOL...

1603
来自专栏weixuqin 的专栏

深度学习之 TensorFlow(二):TensorFlow 基础知识

3155
来自专栏GAN&CV

从0到1实现YOLO v3(part two)

本部分是 从0到1 实现YOLO v3 的第二部分,前两部分主要介绍了YOLO的工作原理,包含的模块的介绍以及如何用pytorch搭建完整的YOLOv3网络结构...

854
来自专栏风口上的猪的文章

机器学习(2) - KNN识别MNIST

 https://github.com/s055523/MNISTTensorFlowSharp

512
来自专栏用户2442861的专栏

openCV—访问与操作像素(图片的区域的更改)

结果如下: 位置(0,0)处的像素 - 红:225,绿:138,蓝:128 位置(0,0)处的像素 - 红:200,绿:150,蓝:100

511
来自专栏大数据杂谈

【Excel系列】Excel数据分析:抽样设计

一、随机数发生器 1. 随机数发生器主要功能 “随机数发生器”分析工具可用几个分布之一产生的独立随机数来填充某个区域。可以通过概率分布来表示总体中的主体特征。...

2268
来自专栏数据派THU

从零开始用Python构造决策树(附公式、代码)

? 来源:Python中文社区 作者:weapon 本文长度为700字,建议阅读5分钟 本文介绍如何不利用第三方库,仅用python自带的标准库来构造一个决策...

2308
来自专栏小小挖掘机

Pointer-network理论及tensorflow实战

数据下载地址:链接:https://pan.baidu.com/s/1nwJiu4T 密码:6joq 本文代码地址:https://github.com/pri...

3037
来自专栏Phoenix的Android之旅

一张图看懂开发和运营的思维差别

用Dijkstra算法很简单,我们需要 · 用 6*6矩阵 source[6][6]表示点之间的距离,也就是图中的权值 · 自己与自己的距离为0,无直接连接的距...

581

扫描关注云+社区