MYSQL 优化常用方法

1、选取最适用的字段属性

MySQL可以很好的支持大数据量的存取,但是一般说来,数据库中的表越小,在它上面执行的查询也就会越快。因此,在创建表的时候,为了获得更好的性能, 我们可以将表中字段的宽度设得尽可能小。例如,在定义邮政编码这个字段时,如果将其设置为CHAR(255),显然给数据库增加了不必要的空间,甚至使用 VARCHAR这种类型也是多余的,因为CHAR(6)就可以很好的完成任务了。同样的,如果可以的话,我们应该使用MEDIUMINT而不是 BIGIN来定义整型字段。

另外一个提高效率的方法是在可能的情况下,应该尽量把字段设置为NOT NULL,这样在将来执行查询的时候,数据库不用去比较NULL值。

对于某些文本字段,例如“省份”或者“性别”,我们可以将它们定义为ENUM类型。因为在MySQL中,ENUM类型被当作数值型数据来处理,而数值型数据被处理起来的速度要比文本类型快得多。这样,我们又可以提高数据库的性能。

2、使用连接(JOIN)来代替子查询(Sub-Queries)

MySQL从4.1开始支持SQL的子查询。这个技术可以使用SELECT语句来创建一个单列的查询结果,然后把这个结果作为过滤条件用在另一个查询中。 例如,我们要将客户基本信息表中没有任何订单的客户删除掉,就可以利用子查询先从销售信息表中将所有发出订单的客户ID取出来,然后将结果传递给主查询, 如下所示:

DELETE FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )

使用子查询可以一次性的完成很多逻辑上需要多个步骤才能完成的SQL操作,同时也可以避免事务或者表锁死,并且写起来也很容易。但是,有些情况下,子查询 可以被更有效率的连接(JOIN).. 替代。例如,假设我们要将所有没有订单记录的用户取出来,可以用下面这个查询完成:

SELECT * FROM customerinfo WHERE CustomerID NOT in (SELECT CustomerID FROM salesinfo )

如果使用连接(JOIN).. 来完成这个查询工作,速度将会快很多。尤其是当salesinfo表中对CustomerID建有索引的话,性能将会更好,查询如下:

SELECT * FROM customerinfo LEFT JOIN salesinfoON customerinfo.CustomerID=salesinfo. CustomerID WHERE salesinfo.CustomerID IS NULL

连接(JOIN).. 之所以更有效率一些,是因为 MySQL不需要在内存中创建临时表来完成这个逻辑上的需要两个步骤的查询工作。

3、使用联合(UNION)来代替手动创建的临时表

MySQL 从 4.0 的版本开始支持 UNION 查询,它可以把需要使用临时表的两条或更多的 SELECT 查询合并的一个查询中。在客户端的查询会话结束的时候,临时表会被自动删除,从而保证数据库整齐、高效。使用 UNION 来创建查询的时候,我们只需要用 UNION作为关键字把多个 SELECT 语句连接起来就可以了,要注意的是所有 SELECT 语句中的字段数目要想同。下面的例子就演示了一个使用 UNION的查询。

SELECT Name, Phone FROM client UNION SELECT Name, BirthDate FROM author

UNION

SELECT Name, Supplier FROM product

4、事务

尽管我们可以使用子查询(Sub-Queries)、连接(JOIN)和联合(UNION)来创建各种各样的查询,但不是所有的数据库操作都可以只用一条 或少数几条SQL语句就可以完成的。更多的时候是需要用到一系列的语句来完成某种工作。但是在这种情况下,当这个语句块中的某一条语句运行出错的时候,整 个语句块的操作就会变得不确定起来。设想一下,要把某个数据同时插入两个相关联的表中,可能会出现这样的情况:第一个表中成功更新后,数据库突然出现意外 状况,造成第二个表中的操作没有完成,这样,就会造成数据的不完整,甚至会破坏数据库中的数据。要避免这种情况,就应该使用事务,它的作用是:要么语句块 中每条语句都操作成功,要么都失败。换句话说,就是可以保持数据库中数据的一致性和完整性。事物以BEGIN 关键字开始,COMMIT关键字结束。在这之间的一条SQL操作失败,那么,ROLLBACK命令就可以把数据库恢复到BEGIN开始之前的状态。

BEGIN;

INSERT INTO salesinfo SET CustomerID=14;

UPDATE inventory SET Quantity=11

WHERE item='book';

COMMIT;

事务的另一个重要作用是当多个用户同时使用相同的数据源时,它可以利用锁定数据库的方法来为用户提供一种安全的访问方式,这样可以保证用户的操作不被其它的用户所干扰。

5、锁定表

尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是在很大的应用系统中。由于在事务执行的过程中,数据库将会被锁定,因此其它的用户请求只能暂时等待直到该事务结束。如果一个数据库系统只有少数几个用户

来使用,事务造成的影响不会成为一个太大的问题;但假设有成千上万的用户同时访问一个数据库系统,例如访问一个电子商务网站,就会产生比较严重的响应延迟。

其实,有些情况下我们可以通过锁定表的方法来获得更好的性能。下面的例子就用锁定表的方法来完成前面一个例子中事务的功能。

LOCK TABLE inventory WRITE

SELECT Quantity FROM inventory

WHEREItem='book';

...

UPDATE inventory SET Quantity=11

WHEREItem='book';

UNLOCK TABLES

这里,我们用一个 SELECT 语句取出初始数据,通过一些计算,用 UPDATE 语句将新值更新到表中。包含有 WRITE 关键字的 LOCK TABLE 语句可以保证在 UNLOCK TABLES 命令被执行之前,不会有其它的访问来对 inventory 进行插入、更新或者删除的操作。

原文发布于微信公众号 - php(phpdaily)

原文发表时间:2016-03-03

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏杨建荣的学习笔记

MySQL Online DDL(二)(r11笔记第88天)

对于Online DDL,之前简单分析了一些场景MySQL中的Online DDL(第一篇)(r11笔记第3天),其实有一个很关键的点没提到,那就是online...

3579
来自专栏battcn

MySQL - 常见的三种存储引擎

数据库存储引擎: 是数据库底层软件组织,数据库管理系统(DBMS)使用数据引擎进行创建、查询、更新和删除数据。不同的存储引擎提供不同的存储机制、索引技巧、锁定水...

661
来自专栏互联网技术栈

MySQL 锁机制——必知必会

MyISAM表的读和写是串行的,但这是就总体而言的。在一定条件下,MyISAM表也支持查询和插入操作的并发进行。

1306
来自专栏lgp20151222

mysql explain 的extra中using index ,using where,using index condition,using index & using where理解

using where:查找使用了索引,不需要回表去查询所需的数据,查询结果是索引的一部分

831
来自专栏性能与架构

MySQL 8.0 将结束 MyISAM 引擎

MyISAM 存储引擎已经有了20年的历史,在1995年时,MyISAM 是 MySQL 唯一的存储引擎,服务了20多年,即将退居二线 MySQL 5.7 中...

3146
来自专栏Clive的技术分享

Mysql锁相关锁的分类锁的适用场景MyISAM表锁MyISAM写阻塞读的例子MyISAM读阻塞写例子MyISAM并发插入MyISAM读写并发MyISAM锁调度调节MyISAM锁调度行为解决读写冲突的

锁类型/引擎 行锁 表锁 页锁 MyISAM 有 InnoDB 有 有 BDB(被InnoDB取代) 有 有 锁的分类 表...

4255
来自专栏杨建荣的学习笔记

MySQL和Oracle的添加字段的处理差别 (r10笔记第73天)

昨天在微信群中有个朋友也是无意中问了一下,说数据库中的表字段想保持一种相对规范的顺序,怎么办?要知道Oracle中这个操作就比较纠结了,因为是按照追加的方式来处...

3486
来自专栏idba

死锁案例之一

一 前言 死锁,其实是一个很有意思也很有挑战的技术问题,大概每个DBA和部分开发同学都会在工作过程中遇见 。关于死锁我会持续写一个系列的案例分析,希望能够对想...

693
来自专栏MYSQL轻松学

MySQL InnoDB Lock(二)

MySQL InnoDB Lock主要从5个部分介绍,这篇文章承接 上一篇 ,会详细介绍后3部分。 ---- 数据库数据一致性 InnoDB事物一致级别 Inn...

3747
来自专栏L宝宝聊IT

Mysql性能优化——索引

对于没有索引的表,单表查询可能几十万数据就是瓶颈,而通常大型网站单日就可能会产生几十万甚至几百万的数据,没有索引查询会变的非常缓慢。

732

扫码关注云+社区