基于用户投票的排名算法(二):Reddit

(不好意思,这个系列中断了近两周,我会尽快在这几天,把后面几篇写完。)

上一次,我介绍了Hacker News的排名算法。它的特点是用户只能投赞成票,但是很多网站还允许用户投反对票。就是说,除了好评以外,你还可以给某篇文章差评。

Reddit是美国最大的网上社区,它的每个帖子前面都有向上和向下的箭头,分别表示"赞成"和"反对"。用户点击进行投票,Reddit根据投票结果,计算出最新的"热点文章排行榜"。

怎样才能将赞成票和反对票结合起来,计算出一段时间内最受欢迎的文章呢?如果文章A有100张赞成票、5张反对票,文章B有1000张赞成票、950张反对票,谁应该排在前面呢?

Reddit的程序是开源的,使用Python语言编写。排名算法的代码大致如下:

这段代码考虑了这样几个因素:

(1)帖子的新旧程度t

  t = 发贴时间 - 2005年12月8日7:46:43

t的单位为秒,用unix时间戳计算。不难看出,一旦帖子发表,t就是固定值,不会随时间改变,而且帖子越新,t值越大。至于2005年12月8日,应该是Reddit成立的时间。

(2)赞成票与反对票的差x

  x = 赞成票 - 反对票

(3)投票方向y

y是一个符号变量,表示对文章的总体看法。如果赞成票居多,y就是+1;如果反对票居多,y就是-1;如果赞成票和反对票相等,y就是0。

(4)帖子的受肯定(否定)的程度z

z表示赞成票与反对票之间差额的绝对值。如果对某个帖子的评价,越是一边倒,z就越大。如果赞成票等于反对票,z就等于1。

结合以上几个变量,Reddit的最终得分计算公式如下:

这个公式可以分成两个部分来讨论:

(一)

这个部分表示,赞成票与反对票的差额z越大,得分越高。

需要注意的是,这里用的是以10为底的对数,意味着z=10可以得到1分,z=100可以得到2分。也就是说,前10个投票人与后90个投票人(乃至再后面900个投票人)的权重是一样的,即如果一个帖子特别受到欢迎,那么越到后面投赞成票,对得分越不会产生影响。

当赞成票等于反对票,z=1,因此这个部分等于0,也就是不产生得分。

(二)

这个部分表示,t越大,得分越高,即新帖子的得分会高于老帖子。它起到自动将老帖子的排名往下拉的作用。

分母的45000秒,等于12.5个小时,也就是说,后一天的帖子会比前一天的帖子多得2分。结合前一部分,可以得到结论,如果前一天的帖子在第二天还想保持原先的排名,在这一天里面,它的z值必须增加100倍(净赞成票增加100倍)。

y的作用是产生加分或减分。当赞成票超过反对票时,这一部分为正,起到加分作用;当赞成票少于反对票时,这一部分为负,起到减分作用;当两者相等, 这一部分为0。这就保证了得到大量净赞成票的文章,会排在前列;赞成票与反对票接近或相等的文章,会排在后面;得到净反对票的文章,会排在最后(因为得分 是负值)。

(三)

这种算法的一个问题是,对于那些有争议的文章(赞成票和反对票非常接近),它们不可能排到前列。假定同一时间有两个帖子发表,文章A有1张赞成票(发帖人投的)、0张反对票,文章B有1000张赞成票、1000张反对票,那么A的排名会高于B,这显然不合理。

结论就是,Reddit的排名,基本上由发帖时间决定,超级受欢迎的文章会排在最前面,一般性受欢迎的文章、有争议的文章都不会很靠前。这决定了Reddit是一个符合大众口味的社区,不是一个很激进、可以展示少数派想法的地方。

[参考资料]

  * How Reddit ranking algorithms work

原文发布于微信公众号 - php(phpdaily)

原文发表时间:2016-04-24

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏大数据挖掘DT机器学习

如何在业余时间学习数据分析?

我是一个web前端开发者和rails程序员,计算机专业出身,掌握Python、Ruby、C、Java编程语言,具有较为扎实的计算机理论基础。 现在工作之外的时间...

3705
来自专栏机器人网

如何让机器人认识“长颈鹿”?

带个三岁小娃去动物园,她凭直觉就知道这个在吃树叶的长脖子生物就是她图画书中叫做“长颈鹿”的动物。这看起来很平常,但其实非常了不起。图画书里是一个单线条组成的静态...

2668
来自专栏AI研习社

如何看待「机器学习不需要数学,很多算法封装好了,调个包就行」这种说法?

不抖机灵,想从接触过机器学习学术圈但已投身工业界的角度来回答。 我认为:大部分机器学习从业者不需要过度的把时间精力放在数学上,而该用于熟悉不同算法的应用场景和掌...

35010
来自专栏大数据挖掘DT机器学习

因果推断与大数据

大数据中一个耳熟能详的说法是:大数据长于分析相关关系,而非因果关系。但这可能是一个伪命题。如何从相关关系中推断出因果关系,才是大数据真正问题所在。这个问题,被...

4277
来自专栏新智元

【中科院自动化所】智能问答技术综述

从早期的数字图书馆、专家系统到如今的搜索引擎,人们一直致力于追求快速、准确的信息获取方法。目前,网络上的数据资源浩如烟海、错综复杂,而用户的信息需求又千变万化、...

2855
来自专栏新智元

对于 tractable tasks,机器学习很难胜过专家

我们 “语义计算” 群在讨论这个句子的句法结构:The asbestos fiber, crocidolite, is unusually resilient ...

2565
来自专栏PPV课数据科学社区

数据驱动决策的13种思维

“数据驱动决策”,为了不让这句话成为空话,请先装备以下13种思想武器,相信将来你一定能用上! 第一、信度与效度思维 这部分也许是全文最难理解的部分,但我觉得也...

3516
来自专栏新智元

Atari联合创始人去世,为什么游戏对AI很重要?

882
来自专栏人工智能快报

超级计算与机器学习可以帮助电厂改善运营

【概要】德国斯图加特大学的科研人员利用超级计算机和机器学习开发出一套工具,可帮助火电厂、核电厂、地热电厂等改善运营效率。

601
来自专栏PPV课数据科学社区

【学习】22本数据分析、挖掘的好书推荐——干货分享

1. 深入浅出数据分析 (豆瓣) 这书挺简单的,基本的内容都涉及了,说得也比较清楚,最后谈到了R是大加分。 难易程度:非常易。 2. 啤酒...

2995

扫码关注云+社区