基于用户投票的排名算法(二):Reddit

(不好意思,这个系列中断了近两周,我会尽快在这几天,把后面几篇写完。)

上一次,我介绍了Hacker News的排名算法。它的特点是用户只能投赞成票,但是很多网站还允许用户投反对票。就是说,除了好评以外,你还可以给某篇文章差评。

Reddit是美国最大的网上社区,它的每个帖子前面都有向上和向下的箭头,分别表示"赞成"和"反对"。用户点击进行投票,Reddit根据投票结果,计算出最新的"热点文章排行榜"。

怎样才能将赞成票和反对票结合起来,计算出一段时间内最受欢迎的文章呢?如果文章A有100张赞成票、5张反对票,文章B有1000张赞成票、950张反对票,谁应该排在前面呢?

Reddit的程序是开源的,使用Python语言编写。排名算法的代码大致如下:

这段代码考虑了这样几个因素:

(1)帖子的新旧程度t

  t = 发贴时间 - 2005年12月8日7:46:43

t的单位为秒,用unix时间戳计算。不难看出,一旦帖子发表,t就是固定值,不会随时间改变,而且帖子越新,t值越大。至于2005年12月8日,应该是Reddit成立的时间。

(2)赞成票与反对票的差x

  x = 赞成票 - 反对票

(3)投票方向y

y是一个符号变量,表示对文章的总体看法。如果赞成票居多,y就是+1;如果反对票居多,y就是-1;如果赞成票和反对票相等,y就是0。

(4)帖子的受肯定(否定)的程度z

z表示赞成票与反对票之间差额的绝对值。如果对某个帖子的评价,越是一边倒,z就越大。如果赞成票等于反对票,z就等于1。

结合以上几个变量,Reddit的最终得分计算公式如下:

这个公式可以分成两个部分来讨论:

(一)

这个部分表示,赞成票与反对票的差额z越大,得分越高。

需要注意的是,这里用的是以10为底的对数,意味着z=10可以得到1分,z=100可以得到2分。也就是说,前10个投票人与后90个投票人(乃至再后面900个投票人)的权重是一样的,即如果一个帖子特别受到欢迎,那么越到后面投赞成票,对得分越不会产生影响。

当赞成票等于反对票,z=1,因此这个部分等于0,也就是不产生得分。

(二)

这个部分表示,t越大,得分越高,即新帖子的得分会高于老帖子。它起到自动将老帖子的排名往下拉的作用。

分母的45000秒,等于12.5个小时,也就是说,后一天的帖子会比前一天的帖子多得2分。结合前一部分,可以得到结论,如果前一天的帖子在第二天还想保持原先的排名,在这一天里面,它的z值必须增加100倍(净赞成票增加100倍)。

y的作用是产生加分或减分。当赞成票超过反对票时,这一部分为正,起到加分作用;当赞成票少于反对票时,这一部分为负,起到减分作用;当两者相等, 这一部分为0。这就保证了得到大量净赞成票的文章,会排在前列;赞成票与反对票接近或相等的文章,会排在后面;得到净反对票的文章,会排在最后(因为得分 是负值)。

(三)

这种算法的一个问题是,对于那些有争议的文章(赞成票和反对票非常接近),它们不可能排到前列。假定同一时间有两个帖子发表,文章A有1张赞成票(发帖人投的)、0张反对票,文章B有1000张赞成票、1000张反对票,那么A的排名会高于B,这显然不合理。

结论就是,Reddit的排名,基本上由发帖时间决定,超级受欢迎的文章会排在最前面,一般性受欢迎的文章、有争议的文章都不会很靠前。这决定了Reddit是一个符合大众口味的社区,不是一个很激进、可以展示少数派想法的地方。

[参考资料]

  * How Reddit ranking algorithms work

原文发布于微信公众号 - php(phpdaily)

原文发表时间:2016-04-24

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏机器之心

英雄联盟如何指挥团战?AI帮你做决策

作者在 Kaggle 中上传了模型的每个部分,以便大家更好地理解数据的处理过程与模型结构:

1702
来自专栏CDA数据分析师

英雄联盟如何指挥团战?AI帮你做决策

作者在 Kaggle 中上传了模型的每个部分,以便大家更好地理解数据的处理过程与模型结构:

1911
来自专栏吉浦迅科技

OpenACC帮助天体物理研究人员洞悉暗能量

项目概览 马克西米兰•卡茨和亚当•雅各布斯是美国石溪大学物理与天文 学系的博士研究生,他们力图通过研究恒星爆炸的成因来探察 难于捉摸的暗能量。卡茨研究两个恒星残...

3278
来自专栏机器人网

工业机器人应该着重注意哪些参数?

技术参数是不同工业机器人之间差距的直接表现形式,不同的机器人技术参数特点不同,对应了它们不同的应用范围,工业机器人是高精密的现代机械设备,参数众多,企业挑选工业...

3698
来自专栏计算机视觉战队

2018年最全的推荐系统干货(ECCV、CVPR、AAAI、ICML)

最近总有几位关注者希望我们可以分享一些“推荐系统”类的干货,最近正好一不小心看到一篇比较好的博主写的推送,在此我通过自己理解和该博主的内容,为大家带来一次推荐系...

5535
来自专栏专知

【业界】新的图像传感器给汽车装上眼睛

【导读】自动驾驶在技术上的进步很大程度上依赖各种传感设备,而各种图像传感器更是汽车能够看清周围世界的眼睛,这一领域也逐渐成为各大芯片公司竞争的焦点,我们来一览这...

2863
来自专栏大数据文摘

计算广告关键技术:他们怎么什么都知道?

65411
来自专栏腾讯数据中心

深度剖析Google数据中心如何利用神经网络压榨PUE——上

互联网的飞速发展拉动了对大规模数据中心的胃口,同时也带来能耗的巨幅上升,目前数据中心的能耗已经超过了全球能源使用量的1.3%。Google的数据中心以高能效著称...

5088
来自专栏AI研习社

不需要敲代码就可以开发深度学习应用?我们来探个究竟

AI 研习社按:在深度学习仍然需要不少的数学和计算机编程能力的现在,如果突然出现了一个不需要写任何公式和代码的深度学习应用开发平台,你会是什么感觉?震惊?鄙夷?...

762
来自专栏DT数据侠

我做了个数据选品工具,帮你们搜寻护发神器

还在为用什么品牌的护发品烦恼吗?有了大数据,你需要做的也许只是动动指头。就读于纽约大学的一位数据侠,基于护发产品的用户评论等数据,开发了一款选品工具,本文分享...

930

扫码关注云+社区

领取腾讯云代金券