算法 | 数据结构常见的八大排序算法

01 前言

八大排序,三大查找是《数据结构》当中非常基础的知识点,在这里为了复习顺带总结了一下常见的八种排序算法。

常见的八大排序算法,他们之间关系如下:

排序算法.png

他们的性能比较:

性能比较.png

下面,利用Python分别将他们进行实现。

直接插入排序

  • 算法思想:

直接插入排序.gif

直接插入排序的核心思想就是:将数组中的所有元素依次跟前面已经排好的元素相比较,如果选择的元素比已排序的元素小,则交换,直到全部元素都比较过。

因此,从上面的描述中我们可以发现,直接插入排序可以用两个循环完成:

  1. 第一层循环:遍历待比较的所有数组元素

2.第二层循环:将本轮选择的元素(selected)与已经排好序的元素(ordered)相比较。

如果:selected > ordered,那么将二者交换

  • 代码实现

#直接插入排序

def insert_sort(L):

#遍历数组中的所有元素,其中0号索引元素默认已排序,因此从1开始

for x in range(1,len(L)):

#将该元素与已排序好的前序数组依次比较,如果该元素小,则交换

#range(x-1,-1,-1):从x-1倒序循环到0

for i in range(x-1,-1,-1):

#判断:如果符合条件则交换

if L[i] > L[i+1]:

temp = L[i+1]

L[i+1] = L[i]

L[i] = temp

希尔排序

  • 算法思想:

希尔排序.png

希尔排序的算法思想:将待排序数组按照步长gap进行分组,然后将每组的元素利用直接插入排序的方法进行排序;每次将gap折半减小,循环上述操作;当gap=1时,利用直接插入,完成排序。

同样的:从上面的描述中我们可以发现:希尔排序的总体实现应该由三个循环完成:

  1. 第一层循环:将gap依次折半,对序列进行分组,直到gap=1
  2. 第二、三层循环:也即直接插入排序所需要的两次循环。具体描述见上。
  • 代码实现: #希尔排序 def insert_shell(L): #初始化gap值,此处利用序列长度的一般为其赋值 gap = (int)(len(L)/2) #第一层循环:依次改变gap值对列表进行分组 while (gap >= 1): #下面:利用直接插入排序的思想对分组数据进行排序 #range(gap,len(L)):从gap开始 for x in range(gap,len(L)): #range(x-gap,-1,-gap):从x-gap开始与选定元素开始倒序比较,每个比较元素之间间隔gap for i in range(x-gap,-1,-gap): #如果该组当中两个元素满足交换条件,则进行交换 if L[i] > L[i+gap]: temp = L[i+gap] L[i+gap] = L[i] L[i] =temp #while循环条件折半 gap = (int)(gap/2)

简单选择排序

  • 算法思想

简单选择排序.gif

简单选择排序的基本思想:比较+交换。

  1. 从待排序序列中,找到关键字最小的元素;
  2. 如果最小元素不是待排序序列的第一个元素,将其和第一个元素互换;
  3. 从余下的 N - 1 个元素中,找出关键字最小的元素,重复(1)、(2)步,直到排序结束。

因此我们可以发现,简单选择排序也是通过两层循环实现。

  1. 第一层循环:依次遍历序列当中的每一个元素

2.第二层循环:将遍历得到的当前元素依次与余下的元素进行比较,符合最小元素的条件,则交换。

  • 代码实现 # 简单选择排序 def select_sort(L): #依次遍历序列中的每一个元素 for x in range(0,len(L)): #将当前位置的元素定义此轮循环当中的最小值 minimum = L[x] #将该元素与剩下的元素依次比较寻找最小元素 for i in range(x+1,len(L)): if L[i] < minimum: temp = L[i]; L[i] = minimum; minimum = temp #将比较后得到的真正的最小值赋值给当前位置 L[x] = minimum

堆排序

堆的概念

堆:本质是一种数组对象。特别重要的一点性质:任意的叶子节点小于(或大于)它所有的父节点。对此,又分为大顶堆和小顶堆,大顶堆要求节点的元素都要大于其孩子,小顶堆要求节点元素都小于其左右孩子,两者对左右孩子的大小关系不做任何要求。

利用堆排序,就是基于大顶堆或者小顶堆的一种排序方法。下面,我们通过大顶堆来实现。

  • 基本思想: 堆排序可以按照以下步骤来完成:
    1. 首先将序列构建称为大顶堆; (这样满足了大顶堆那条性质:位于根节点的元素一定是当前序列的最大值)
    构建大顶堆.png

2.取出当前大顶堆的根节点,将其与序列末尾元素进行交换;

(此时:序列末尾的元素为已排序的最大值;由于交换了元素,当前位于根节点的堆并不一定满足大顶堆的性质)

3.对交换后的n-1个序列元素进行调整,使其满足大顶堆的性质;

Paste_Image.png
  1. 重复2.3步骤,直至堆中只有1个元素为止
  • 代码实现: #-----------------堆排序---------------------- #**********获取左右叶子节点********** def LEFT(i): return 2*i + 1 def RIGHT(i): return 2*i + 2 #********** 调整大顶堆 ********** #L:待调整序列 length: 序列长度 i:需要调整的结点 def adjust_max_heap(L,length,i): #定义一个int值保存当前序列最大值的下标 largest = i #执行循环操作:两个任务:1 寻找最大值的下标;2.最大值与父节点交换 while (1): #获得序列左右叶子节点的下标 left,right = LEFT(i),RIGHT(i) #当左叶子节点的下标小于序列长度 并且 左叶子节点的值大于父节点时,将左叶子节点的下标赋值给largest if (left < length) and (L[left] > L[i]): largest = left print('左叶子节点') else: largest = i #当右叶子节点的下标小于序列长度 并且 右叶子节点的值大于父节点时,将右叶子节点的下标值赋值给largest if (right < length) and (L[right] > L[largest]): largest = right print('右叶子节点') #如果largest不等于i 说明当前的父节点不是最大值,需要交换值 if (largest != i): temp = L[i] L[i] = L[largest] L[largest] = temp i = largest print(largest) continue else: break #********** 建立大顶堆 ********** def build_max_heap(L): length = len(L) for x in range((int)((length-1)/2),-1,-1): adjust_max_heap(L,length,x) #********** 堆排序 ********** def heap_sort(L): #先建立大顶堆,保证最大值位于根节点;并且父节点的值大于叶子结点 build_max_heap(L) #i:当前堆中序列的长度.初始化为序列的长度 i = len(L) #执行循环:1. 每次取出堆顶元素置于序列的最后(len-1,len-2,len-3...) # 2. 调整堆,使其继续满足大顶堆的性质,注意实时修改堆中序列的长度 while (i > 0): temp = L[i-1] L[i-1] = L[0] L[0] = temp #堆中序列长度减1 i = i-1 #调整大顶堆 adjust_max_heap(L,i,0)

冒泡排序

  • 基本思想
冒泡排序.gif

冒泡排序思路比较简单:

  1. 将序列当中的左右元素,依次比较,保证右边的元素始终大于左边的元素; ( 第一轮结束后,序列最后一个元素一定是当前序列的最大值;)
  2. 对序列当中剩下的n-1个元素再次执行步骤1。
  3. 对于长度为n的序列,一共需要执行n-1轮比较 (利用while循环可以减少执行次数)

*代码实现

#冒泡排序
def bubble_sort(L):
    length = len(L)
#序列长度为length,需要执行length-1轮交换
    for x in range(1,length):
#对于每一轮交换,都将序列当中的左右元素进行比较
#每轮交换当中,由于序列最后的元素一定是最大的,因此每轮循环到序列未排序的位置即可
        for i in range(0,length-x):
            if L[i] > L[i+1]:
                temp = L[i]
                L[i] = L[i+1]
                L[i+1] = temp

快速排序

  • 算法思想:
快速排序.gif

快速排序的基本思想:挖坑填数+分治法

  1. 从序列当中选择一个基准数(pivot) 在这里我们选择序列当中第一个数最为基准数
  2. 将序列当中的所有数依次遍历,比基准数大的位于其右侧,比基准数小的位于其左侧

3. 重复步骤1.2,直到所有子集当中只有一个元素为止。

伪代码描述如下: 1.i =L; j = R; 将基准数挖出形成第一个坑a[i]。 2.j--由后向前找比它小的数,找到后挖出此数填前一个坑a[i]中。 3.i++由前向后找比它大的数,找到后也挖出此数填到前一个坑a[j]中。 4.再重复执行2,3二步,直到i==j,将基准数填入a[i]中

  • 代码实现: #快速排序 #L:待排序的序列;start排序的开始index,end序列末尾的index #对于长度为length的序列:start = 0;end = length-1 def quick_sort(L,start,end): if start < end: i , j , pivot = start , end , L[start] while i < j: #从右开始向左寻找第一个小于pivot的值 while (i < j) and (L[j] >= pivot): j = j-1 #将小于pivot的值移到左边 if (i < j): L[i] = L[j] i = i+1 #从左开始向右寻找第一个大于pivot的值 while (i < j) and (L[i] < pivot): i = i+1 #将大于pivot的值移到右边 if (i < j): L[j] = L[i] j = j-1 #循环结束后,说明 i=j,此时左边的值全都小于pivot,右边的值全都大于pivot #pivot的位置移动正确,那么此时只需对左右两侧的序列调用此函数进一步排序即可 #递归调用函数:依次对左侧序列:从0 ~ i-1//右侧序列:从i+1 ~ end L[i] = pivot #左侧序列继续排序 quick_sort(L,start,i-1) #右侧序列继续排序 quick_sort(L,i+1,end)

归并排序

  • 算法思想:
归并排序.gif
  • 首先依次从第一段与第二段中取出元素比较,将较小的元素赋值给temp[]
  • 重复执行上一步,当某一段赋值结束,则将另一段剩下的元素赋值给temp[]
  • 此时将temp[]中的元素复制给L[],则得到的L[first...last]有序
  • 分解----将序列每次折半拆分
  • 合并----将划分后的序列段两两排序合并 因此,归并排序实际上就是两个操作,拆分+合并
  1. 归并排序是建立在归并操作上的一种有效的排序算法,该算法是采用分治法的一个典型的应用。它的基本操作是:将已有的子序列合并,达到完全有序的序列;即先使每个子序列有序,再使子序列段间有序。
  2. 归并排序其实要做两件事:
  3. 如何合并? L[first...mid]为第一段,L[mid+1...last]为第二段,并且两端已经有序,现在我们要将两端合成达到L[first...last]并且也有序。
  4. 如何分解? 在这里,我们采用递归的方法,首先将待排序列分成A,B两组;然后重复对A、B序列 分组;直到分组后组内只有一个元素,此时我们认为组内所有元素有序,则分组结束。
  • 代码实现
  • # 归并排序 #这是合并的函数 # 将序列L[first...mid]与序列L[mid+1...last]进行合并 def mergearray(L,first,mid,last,temp): #对i,j,k分别进行赋值 i,j,k = first,mid+1,0 #当左右两边都有数时进行比较,取较小的数 while (i <= mid) and (j <= last): if L[i] <= L[j]: temp[k] = L[i] i = i+1 k = k+1 else: temp[k] = L[j] j = j+1 k = k+1 #如果左边序列还有数 while (i <= mid): temp[k] = L[i] i = i+1 k = k+1 #如果右边序列还有数 while (j <= last): temp[k] = L[j] j = j+1 k = k+1 #将temp当中该段有序元素赋值给L待排序列使之部分有序 for x in range(0,k): L[first+x] = temp[x] # 这是分组的函数 def merge_sort(L,first,last,temp): if first < last: mid = (int)((first + last) / 2) #使左边序列有序 merge_sort(L,first,mid,temp) #使右边序列有序 merge_sort(L,mid+1,last,temp) #将两个有序序列合并 mergearray(L,first,mid,last,temp) # 归并排序的函数 def merge_sort_array(L): #声明一个长度为len(L)的空列表 temp = len(L)*[None] #调用归并排序 merge_sort(L,0,len(L)-1,temp)

基数排序

  • 算法思想
基数排序.gif
  • 代码实现 #************************基数排序**************************** #确定排序的次数 #排序的顺序跟序列中最大数的位数相关 def radix_sort_nums(L): maxNum = L[0] #寻找序列中的最大数 for x in L: if maxNum < x: maxNum = x #确定序列中的最大元素的位数 times = 0 while (maxNum > 0): maxNum = (int)(maxNum/10) times = times+1 return times #找到num从低到高第pos位的数据 def get_num_pos(num,pos): return ((int)(num/(10**(pos-1))))%10 #基数排序 def radix_sort(L): count = 10*[None] #存放各个桶的数据统计个数 bucket = len(L)*[None] #暂时存放排序结果 #从低位到高位依次执行循环 for pos in range(1,radix_sort_nums(L)+1): #置空各个桶的数据统计 for x in range(0,10): count[x] = 0 #统计当前该位(个位,十位,百位....)的元素数目 for x in range(0,len(L)): #统计各个桶将要装进去的元素个数 j = get_num_pos(int(L[x]),pos) count[j] = count[j]+1 #count[i]表示第i个桶的右边界索引 for x in range(1,10): count[x] = count[x] + count[x-1] #将数据依次装入桶中 for x in range(len(L)-1,-1,-1): #求出元素第K位的数字 j = get_num_pos(L[x],pos) #放入对应的桶中,count[j]-1是第j个桶的右边界索引 bucket[count[j]-1] = L[x] #对应桶的装入数据索引-1 count[j] = count[j]-1 # 将已分配好的桶中数据再倒出来,此时已是对应当前位数有序的表 for x in range(0,len(L)): L[x] = bucket[x]

后记

写完之后运行了一下时间比较:

1w个数据时:

直接插入排序:11.615608 希尔排序:13.012008 简单选择排序:3.645136000000001 堆排序:0.09587900000000005 冒泡排序:6.687218999999999 #**************************************************** 快速排序:9.999999974752427e-07 #快速排序有误:实际上并未执行 #RecursionError: maximum recursion depth exceeded in comparison #**************************************************** 归并排序:0.05638299999999674 基数排序:0.08150400000000246

10w个数据时:

直接插入排序:1233.581131 希尔排序:1409.8012320000003 简单选择排序:466.66974500000015 堆排序:1.2036720000000969 冒泡排序:751.274449 #**************************************************** 快速排序:1.0000003385357559e-06 #快速排序有误:实际上并未执行 #RecursionError: maximum recursion depth exceeded in comparison #**************************************************** 归并排序:0.8262230000000272 基数排序:1.1162899999999354

从运行结果上来看,堆排序、归并排序、基数排序真的快。

对于快速排序迭代深度超过的问题,可以将考虑将快排通过非递归的方式进行实现。

参考资料

  • 数据结构可视化:visualgo(http://zh.visualgo.net/en)
  • 希尔排序介绍:希尔排序(http://www.cnblogs.com/jingmoxukong/p/4303279.html)
  • 堆排序:《算法导论》读书笔记之第6章 堆排序(http://www.cnblogs.com/Anker/archive/2013/01/23/2873422.html)
  • 博客园:静默虚空
  • 博客:vincent-cws(http://blog.chinaunix.net/uid/21457204.html

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-09-08

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏IT可乐

Java数据结构和算法(九)——高级排序

  春晚好看吗?不存在的!!!   在Java数据结构和算法(三)——冒泡、选择、插入排序算法中我们介绍了三种简单的排序算法,它们的时间复杂度大O表示法都是O(...

3456
来自专栏Python攻城狮

数据结构与算法 - 排序与搜索排序与搜索

冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重...

603
来自专栏静默虚空的博客

排序一 冒泡排序

要点 冒泡排序是一种交换排序。 什么是交换排序呢? 交换排序:两两比较待排序的关键字,并交换不满足次序要求的那对数,直到整个表都满足次序要求为止。 算法思想 它...

2005
来自专栏余林丰

5.比较排序之归并排序(非递归)

  在上一节中讲解了归并排序的递归版《4.比较排序之归并排序(递归)》,通常来讲,递归版的归并排序要更为常用,本节简单介绍下非递归版的归并排序。思路和递归版相...

1999
来自专栏向治洪

算法笔记之排序

最近在看《算法笔记》,如果单从算法来说,这本书真正做到了短小精悍,首先以排序入题,那么我们今天也来说说排序。 排序 将一堆杂乱无章的元素按照某种规则有序排列的过...

20210
来自专栏我是东东强

常见算法之排序

各类排序算法,不仅是算法基本功,也是面试中永恒的考题,关于每种算法思想、实现(递归与非递归)以及时空复杂度分析是必须牢牢把握的送分题。本文先将排序算法按不同标准...

852
来自专栏互联网大杂烩

合并排序

合并排序是建立在归并操作上的一种有效的排序算法。该算法是采用分治法 的一个非常典型的应用。 合并排序法是将两个(或两个以上)有序表合并成一个新的有序表,即把待...

722
来自专栏恰同学骚年

数据结构基础温故-7.排序

排序(Sorting)是计算机内经常进行的一种操作,其目的是将一组“无序”的记录序列调整为按关键字“有序”的记录序列。如何进行排序,特别是高效率地进行排序时计算...

661
来自专栏尾尾部落

普林斯顿大学算法公开课笔记——插入排序

现有一组数组 arr = [5, 6, 3, 1, 8, 7, 2, 4],共有八个记录,排序过程如下:

821
来自专栏武培轩的专栏

Leetcode#561. Array Partition I(数组拆分 I)

给定长度为 2n 的数组, 你的任务是将这些数分成 n 对, 例如 (a1, b1), (a2, b2), ..., (an, bn) ,使得从1 到 n 的 ...

832

扫码关注云+社区