TensorFlow从1到2 | 第三章:深度学习革命的开端:卷积神经网络

关于全连接神经网络(Full Connected Neural Network,FC)的讨论已经说的不少了,本篇将要介绍的是,从2006年至今的神经网络第三次浪潮中,取得巨大成功、处于最核心位置的技术——卷积神经网络,Convolutional Neural Network(CNN)。

视觉皮层,来源:https://lilianweng.github.io/lil-log/2017/06/21/an-overview-of-deep-learning.html

一战成名

2012年AlexNet在ImageNet上一战成名,点爆了深度学习革命,这是历史性的时刻。其中

的故事,推荐朱珑(Leo Zhu)的《深度学习三十年创新路》(http://36kr.com/p/533832.html),讲的很精彩,下面的引用部分就是片段节选。

标志性事件是,2012年底,Geoff Hinton的博士生Alex Krizhevsky、Ilya Sutskever(他们研究深度学习时间并不长)在图片分类的竞赛ImageNet上,识别结果拿了第一名。其实类似的比赛每年很多,但意义在于,Google团队也在这个数据集上做了测试(非公开的,Google没有显式参加学术界的“竞赛”),用的也是深度学习,但识别精度比Geoff Hinton的团队差了很多,这下工业界振奋了。

ImageNet

如上图所示,2012年AlexNet的惊艳之处在于,它比上一年冠军的错误率25.8%低了近10个百分点。正是这前所未有的进步,引领人们穿透迷雾,望见了未来。

但更有意思的是(很有启发性并值得思考),Alex Krizhevsky 和 Geoff Hinton的竞赛用的正是 Yann Lecun 发明的卷积神经网,但结果刚出来时(实现细节还没有公布),Yann Lecun和他的NYU实验室成员甚至没法重复Geoff Hinton的结果。自己发明的算法,使用结果不如另外一个组。这下炸了锅,Yann Lecun开了组会,反思的主题是“为什么过去两年我们没有得到这样的成绩” 。

黑马AlexNet并不“新”,如上面节选所说,它其实脱胎于1998年即14年前就被Lecun提出的卷积神经网络LeNet-5,改动非常有限:

  • 采用ReLU而非S型神经元;
  • 网络更深;
  • 训练数据量更大;
  • 采用GPU训练;

前两点与网络架构相关,虽然ReLU的应用贡献良多,但就整个算法框架来说它们都算不上有实质性的改变。而后两点或许才是更根本的,得益于大数据和摩尔定律,AlexNet获得了可以用更多数据来训练网络所需要的算力。

而LeNet-5在当时的数据与算力条件下,显然不如其他的机器学习算法(核方法、图模型、SVM等)更有前景,冰封十余载才获得了认可。

神经科学的启示

就像20世纪40、50年代,受神经科学发现的启示,人类构建了人工神经元一样,1959年Hubel和Wiesel对哺乳动物视觉皮层机理的发现,让人类再次受到造物主的馈赠,卷积神经网络就是最成功的应用之一。

哈佛大学的神经生理学博士Hubel和Wiesel观察了猫大脑中的单个神经元如何响屏幕上的图像(https://www.youtube.com/watch?v=8VdFf3egwfg),他们发现处于视觉系统较前面区域的神经元对特定的光模式反应强烈,而对其他模式完全没有反应,这个部分被称为初级视觉皮层,Primary Visual Cortex,也被称为V1。他们凭借这个开创性的研究,在1981年获得了诺贝尔生理学或医学奖。

V1的发现开启了对人脑视觉系统进一步的认知,如本篇最前面引用的那幅图中所绘制的,当眼睛查看外界对象时,信息从视网膜流到V1,然后到V2(Secondary Visual Cortex),V4,之后是IT(Inferior Temporal Gyrus,颞下回)。哺乳动物的视觉系统是分层递进的,每一级都比前一级处理更高层次的概念:

  • V1:边缘检测;
  • V2:提取简单的视觉要素(方向、空间、频率、颜色等)
  • V4:监测物体的特征;
  • TI:物体识别;

卷积神经网络就是根据V1的3个性质设计的:

  • 空间映射:根据V1的空间映射特性,卷积神经网络中的各层都是基于二维空间结构的(末端的全连接层除外);
  • 简单细胞:V1中有许多简单细胞(simple cell),它们具有局部感受野,卷积网络中的卷积核据此设计;
  • 复杂细胞:V1中有许多复杂细胞(complex cell),用于响应简单细胞检测的特征,且对于微小偏移具有不变形,这启发了卷积网络中的池化单元;

V1其后的视觉区域,其实与V1具有相同的原理,特征检测与池化策略反复执行。同样,卷积网络架构的设计,也是卷积层和池化层重复叠加,形成深度层级。具有开创性的现代卷积网络LeNet-5,架构如下图所示:

LeNet-5

迂回前进的历史

卷积神经网络并不是一夜之间发明出来的,从2012年AlexNet开始追溯的话,还需要更多历史性时刻的支撑,即使是最早的卷积神经网络出现,也在Hubel和Wiesel实验的二十年后了。尽管神经科学给出了启示,却并没有告诉我们该如何训练卷积网络:

  • 1980年,日本科学家Fukushima构建了卷积神经网络,但当时反向传播算法还未准备好;
  • 1986年,Hinton成功将反向传播算法用于训练神经网络;
  • 1989年,LeCun开始基于反向传播算法训练二维卷积网络;
  • 1998年,LeCun提出第一个正式的卷积神经网络LeNet-5;

历史就是这样迂回前进的,一开始是各个独立、随机的小支流,随着时间的推进,最终汇聚在一起产生革命性的时刻。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-10-25

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏AI科技大本营的专栏

华裔女性钱璐璐:用 DNA 开发人工智能神经网络,识别手写数字!

近日,据 Motherboard 等多家外媒报道,来自加州理工学院生物工程助理教授 Lu-lu Qian(钱璐璐)和她的学生 Kevin Cherry 共同开发...

521
来自专栏AI科技评论

干货 | 数据科学岗位必备面经:17个热点问题如何回答?(一)

AI科技评论按:随着数据科学成为炙手可热的领域,相关的应聘岗位也多了起来。面试者们在准备应聘的过程中,往往会有一个疑问:面试官们会问些什么?我又应该如何回答? ...

3538
来自专栏新智元

【Science】超越深度学习300倍, Vicarious发布生成视觉模型,LeCun批“这就是AI炒作的教科书”

【新智元导读】最近大家都在探索“超越深度学习”的方法,“美国版DeepMind” Vicarious 近日在Science上发布的一项研究,使用不同于深度学习的...

3426
来自专栏新智元

AI当“暖男”:给裸照自动穿上比基尼

【新智元导读】AI可以用来鉴黄,但有时会把含裸女的古典名画过滤掉。巴西的一组研究人员在JICNN上展示了一种新方法,使用生成对抗网络,给女性裸体照“穿上”比基尼...

602
来自专栏机器之心

前沿 | 剧本自动生成电影:杜克大学提出AI视频生成新方法

2936
来自专栏用户2442861的专栏

找工作的一些感悟——前端小菜的成长

http://www.cnblogs.com/dolphinX/p/3510346.html

191
来自专栏机器之心

前沿 | Neuromation新研究:利用卷积神经网络进行儿童骨龄评估

Alexander 的论文《Pediatric Bone Age Assessment Using Deep Convolutional Neural Netw...

532
来自专栏AI研习社

从事人脸识别研究必读的N篇文章

该文内容较老,但对入门者还是有很强的学习意义,可以了解人脸识别的历程与技术发展。 人脸检测/跟踪 人脸检测/跟踪的目的是在图像/视频中找到各个人脸所在的位置...

2734
来自专栏机器之心

学界 | 邓力等人提出BBQ网络:将深度强化学习用于对话系统

34614
来自专栏大数据文摘

“无中生有”计算机视觉探奇

942

扫描关注云+社区