学界 | AI 黑箱难题怎么破?基于神经网络模型的算法使机器学习透明化

编者按:人们可以训练人工智能 (AI)和机器人完成任务,但整个过程在黑箱中运作。我们并不知道 AI 和机器人是如何决策的。一家名为 OptimizingMind 的初创公司想要解决这个问题。这篇文章将讲述该公司对建立透明 AI 决策过程的愿景和大胆尝试。本文发表于 TechRepublic,作者 Hope Reese,原标题《 Transparent machine learning: How to create 'clear-box' AI》。由雷锋网(公众号:雷锋网)编译,未经许可,不得转载。

AI 领域的下一个大事件并不是教会 AI 完成某项任务,而是让机器向人们解释为什么它们做出了某项决策。比方说,一个机器人决定走一条特定路线去仓库,又比如,一辆无人驾驶汽车决定向左或向右转。我们怎么知道 AI 为什么做出这些决定?

卡内基梅隆大学计算机科学教授 Manuela Veloso 是研究协作机器人的专家。他表示,能解释自身行为的 AI 对赢得大众对人工智能的信任至关重要。“我们需要质疑为什么算法程序会做出这样那样的决定,如果我们不在 AI 动机解释上花功夫,就无法信任这个智能系统。”

为解决该问题, 创业公司 OptimizingMind 发明了一项能观察智能机器决策过程的技术。

这个算法的目的是创造 “透明访问”系统,以呈现机器学习是如何做出预期(expectations)的。OptimizingMind 的负责人 Tsvi Achler 说:

“该系统以人脑的神经模型为基础,能把任何深度网络 (deep networks)转化为该系统的模式。它的目的是探索 AI 行为的潜在预期 (underlying expectations),并且找出 AI 思维模式的哪个方面对决策影响最大”。

有着神经科学、医药和计算机科学多重学科背景的 Achler 认为,我们能从人脑如何作出和解释决策中学习到很多(应用到 AI 的知识)。

“我感兴趣的是,大脑和计算机的共同点在哪里?为什么人脑可以在学会任何模型之后把它解释出来。如果我说 ‘章鱼’,你是否能告诉我那是什么?如果我问章鱼触手长什么样,你能告诉我吗?”

人能做到,AI 为什么不行?

他说,当人类观察到一个新模式(或规律)的时候,会立刻学会那个模式。这对 AI 暂时还不可能。 AI 的学习方法被称为批量学习。如果你想要对 AI 加入一个新模式或者新注解,你必须从头开始把所有的新旧模式重新教一遍。

Achler 开发的算法呈现出神经科学里的 “爆裂” 现象。当人观察到一个新模式时,多个神经元被同时激发,然后它们沉寂下来。当你向某人展示一个模式的时候,下一瞬间会发生神经兴奋,之后逐渐地平静下来。在这个算法里你会看到同样的事情。

实际上,这种研究方式是对传统机器学习进行了重新思考,Achler 认为该过程就像深度学习、感知器、支持向量机(SVM) 、 卷积神经网络(CNN)、递归神经网络(RNN)、反向传播等研究一样。研究者们并没有打算解决即时学习这一难题。 “这项技术的目的非常明确,那就是尝试解释 AI 是怎样思考的。没有人想过如何让系统变得更灵活或是更具可信度,而它的整体目标是让 AI 决策更容易被访问。”

OptimizingMind 是一种以人脑运行方式为基础的算法,旨在使开发者能“观察到系统内部,理解它们(AI 系统)在干什么,并且很方便地编辑它们,而无需从头开始训练”。这能让机器学习“一步到位”,而神经网络马上就能学会。举例来说,人们能告诉 Siri 某一个词的定义,然后它会被存储起来。今天神经网络还达不到这一点,它们需要用无数案例不断训练学习。

所以 “透明访问”系统是什么意思呢?根据 Achler 的说法, 这个系统提供了一种实时观察 AI 决策的方法。 它可以访问权重、特点和节点,提供能读取这些信息的灵活性,并且能改写它们。最终,这个系统能让我们理解神经网络是怎么做出一个决策的。这个工具能帮助工程师们大幅减少机器开发的时间,帮企业节省资源。

此外 Achler 还表示,在提供透明度之外,这个算法还可以被修改。不但预期(expectations)能被表达出来,每个单独预期还能随着新信息立刻改变。

今天,大多数机器学习的方法使用一个正反馈(feedforward)技术。风险投资公司 Naiss.io 的联合创始人 Ed Fernandez 说,正反馈使用优化过的权重执行任务。在正反馈系统里,独特性信息( uniqueness information)依据训练中出现的频率被录入权重。这意味着整套训练中的权重必须经过优化。这又意味着 OptimizingMind 可以“根据正在被识别的模式执行优化”,这不是为了权重而优化,而是为了模式识别去优化。

当机器学习与商业更紧密结合,并成为无人驾驶和其他极其重要科技的基石,理解机器学习中到底发生了什么就变得至关重要。事实上, DARPA 最近启动了一项对可解释 AI (XAI,explainable artificial intelligence) 的投资。

正如 Veloso 教授说的:“我们不能假定 AI 系统完美无缺。”我们必须从 AI 的错误中学习。Veloso 表示,“如果某天发生了一起 AI 事故,我们必须避免它再次发生。”

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-11-16

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏PaddlePaddle

知名深度学习框架的典型应用案例一览

TensorFlow在谷歌系的产品中应用非常多,比如Gmail, Google Play Recommendation, Search, Translate, ...

1245
来自专栏机器之心

观点 | 人工智能的三个阶段:我们正从统计学习走向语境顺应

选自DataScienceCentral 作者:William Vorhies 机器之心编译 参与:黄小天、微胖、李泽南 我们处在人工智能的哪个阶段?我们将要去...

3479
来自专栏新智元

Hassabis 论文:为智能体设计“不需要模型的情景控制系统”

【新智元导读】谷歌 DeepMind 创始人 Demis Hassabis 等人近日发表论文,延续其拓展的辅助学习系统理论,为智能体设计了一个“不需要模型的情景...

3117
来自专栏CDA数据分析师

数据分析从哪里开始入门学习,可以推荐的书有哪些?

数据行业在迅速的发展,几乎每天都会出现新的技术和方法。因此,想要跟上这个行业的步伐是有挑战性的。之前CDA数据分析师曾列出了15位在科技和数据科学领域最具影响力...

4285
来自专栏云市场·精选汇

如何细致地为用户提供业务知识服务?

近年随着深度学习及强化学习技术的进一步深入,智能问答机器人所依赖的知识库构建与维护成本也随之减少。大数据分析和智能语音技术在客服场景深入应用,AI正在变革客服行...

1053
来自专栏人人都是极客

AI芯片的历史和现状

人的思维活动是否能用计算机来替代,从图灵的论文《计算机器与智能》和图灵测试,到最初级的神经元模拟单元——感知机,到现在多达上百层的深度神经网络,对人工智能的探索...

1784
来自专栏华章科技

10个小方法让你的数据更引人注目

你已经花了无数时间来创建和进行一系列的活动,现在你终于准备好了要把结果展示给老板看。你已经精心排练了你的演示报告,对整个工作感觉好极了,除了那张展现结果表述得不...

1092
来自专栏新智元

【谷歌机器学习课程公开了!】Google AI 教育项目今起免费开放,完美支持中文

---- 新智元报道 作者:马文、克雷格 【新智元导读】3月的第一天,谷歌就为各级别的AI开发者和研究人员带来了福利:免费的机器学习和人工智能课程。首...

4666
来自专栏目标检测和深度学习

【谷歌机器学习课程公开了!】Google AI 教育项目今起免费开放,完美支持中文

【新智元导读】3月的第一天,谷歌就为各级别的AI开发者和研究人员带来了福利:免费的机器学习和人工智能课程。首先推出的机器学习速成班课程约为15小时,包括互动课程...

3898
来自专栏新智元

【CNN超越RNN】DeepL机器翻译碾压谷歌、Facebook和微软

【新智元导读】一家名叫DeepL的公司声称他们的翻译工具已经超过谷歌、微软、Facebook等大公司的翻译工具,本文提供了作者亲测的评价。 谷歌、微软、Face...

3415

扫码关注云+社区