专栏首页人工智能LeadAI计算机视觉 | Python OpenCV 3 使用背景减除进行目标检测

计算机视觉 | Python OpenCV 3 使用背景减除进行目标检测

背景减除(Background Subtraction)是许多基于计算机视觉的任务中的主要预处理步骤。如果我们有完整的静止的背景帧,那么我们可以通过帧差法来计算像素差从而获取到前景对象。但是在大多数情况下,我们可能没有这样的图像,所以我们需要从我们拥有的任何图像中提取背景。当运动物体有阴影时,由于阴影也在移动,情况会变的变得更加复杂。为此引入了背景减除算法,通过这一方法我们能够从视频中分离出运动的物体前景,从而达到目标检测的目的。 OpenCV已经实现了几种非常容易使用的算法。

环境

  • Python 3.6
  • OpenCV 3.2 + contrib

在Python下可以通过直接导入wheel包来安装opencv+contrib,可以从下面这个网址下载对应的文件: opencv_python‑3.2.0+contrib‑cp36‑cp36m‑win_amd64.whl http://www.lfd.uci.edu/~gohlke/pythonlibs/

KNN

KNN算法,即K-nearest neigbours - based Background/Foreground Segmentation Algorithm。2006年,由Zoran Zivkovic 和Ferdinand van der Heijden在论文"Efficient adaptive density estimation per image pixel for the task of background subtraction."中提出。

bs = cv2.createBackgroundSubtractorKNN(detectShadows=True) fg_mask = bs.apply(frame)

MOG

MOG算法,即高斯混合模型分离算法,全称Gaussian Mixture-based Background/Foreground Segmentation Algorithm。2001年,由P.KadewTraKuPong和R.Bowden在论文“An improved adaptive background mixture model for real-time tracking with shadow detection”中提出。它使用一种通过K高斯分布的混合来对每个背景像素进行建模的方法(K = 3〜5)。

bs = cv2.bgsegm.createBackgroundSubtractorMOG(history=history) bs.setHistory(history) fg_mask = bs.apply(frame)

MOG2

MOG2算法,也是高斯混合模型分离算法,是MOG的改进算法。它基于Z.Zivkovic发布的两篇论文,即2004年发布的“Improved adaptive Gausian mixture model for background subtraction”和2006年发布的“Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction”中提出。该算法的一个重要特征是 它为每个像素选择适当数量的高斯分布,它可以更好地适应不同场景的照明变化等。

bs = cv2.createBackgroundSubtractorMOG2(history=history, detectShadows=True) bs.setHistory(history) fg_mask = bs.apply(frame)

GMG

该算法结合统计背景图像估计和每像素贝叶斯分割。由 Andrew B. Godbehere, Akihiro Matsukawa, Ken Goldberg在2012年的文章“Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive Audio Art Installation”中提出。该算法使用前几个(默认为120)帧进行后台建模。它采用概率前景分割算法,使用贝叶斯推理识别可能的前景对象。

bs = cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames=history) fg_mask = bs.apply(frame)

使用KNN根据前景面积检测运动物体

代码:

# coding:utf8
import cv2
def detect_video(video):     
camera = cv2.VideoCapture(video)    
history = 20    # 训练帧数     
bs = cv2.createBackgroundSubtractorKNN(detectShadows=True)  # 背景减除器,设置阴影检测   bs.setHistory(history)     
frames = 0     
while True:         
res, frame = camera.read()         
if not res:             
break         
fg_mask = bs.apply(frame)   # 获取 foreground mask         
if frames < history:             
frames += 1             
continue         
# 对原始帧进行膨胀去噪         
th = cv2.threshold(fg_mask.copy(), 244, 255, cv2.THRESH_BINARY)[1]         
th = cv2.erode(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), iterations=2)         dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8, 3)), iterations=2)         # 获取所有检测框         image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)         
for c in contours:             
# 获取矩形框边界坐标             
x, y, w, h = cv2.boundingRect(c)             
# 计算矩形框的面积             
area = cv2.contourArea(c)             
if 500 < area < 3000:                 
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)         
cv2.imshow("detection", frame)         
cv2.imshow("back", dilated)        
 if cv2.waitKey(110) & 0xff == 27:             
break     
camera.release()
 if __name__ == '__main__':
video = 'person.avi'     
detect_video(video)

效果:

本文分享自微信公众号 - 人工智能LeadAI(atleadai),作者:洛荷

原文出处及转载信息见文内详细说明,如有侵权,请联系 yunjia_community@tencent.com 删除。

原始发表时间:2017-11-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

我来说两句

0 条评论
登录 后参与评论

相关文章

  • Python中defaultdict用法

    defaultdict类的初始化函数接受一个类型作为参数,当所访问的键不存在的时候,可以实例化一个值作为默认值

    用户1332428
  • 如何轻松愉快地理解条件随机场(CRF)?

    理解条件随机场最好的办法就是用一个现实的例子来说明它。但是目前中文的条件随机场文章鲜有这样干的,可能写文章的人都是大牛,不屑于举例子吧。于是乎,我翻译了这篇文章...

    用户1332428
  • NLP系列学习:CRF条件随机场(2)

    这一篇文章是来自我的好朋友也是一位非常厉害的机器学习工程师的作品,征得同意后转载过来,作为条件随机场学习的一些趣味补充,也希望大家可以多多关注他,他的简书主页地...

    用户1332428
  • 用opencv给图片换背景色的示例代码

    OpenCV函数:cv2.blur(), cv2.GaussianBlur(), cv2.medianBlur(), cv2.bilateralFilter()

    砸漏
  • opencv: 形态学 转换(图示+源码)

    OpenCV中的形态学转换操作有七种:腐蚀,膨胀,开运算,闭运算,形态学梯度,礼帽,黑帽。

    JNingWei
  • OpenCV 系列教程5 | OpenCV 图像处理(中)

    霍夫变换是一种特征提取技术,主要应用于检测图像中的直线或者圆。 OpenCV 中分为霍夫线变换和霍夫圆变换。

    机器视觉CV
  • 解决Opencv+Python cv2.imshow闪退问题

    程序运行到这,图片闪退,在cv.imshow()后加入cv2.waitKey()即可

    砸漏
  • 50行Python代码实现视频中物体颜色识别和跟踪(必须以红色为例)

    目前计算机视觉(CV)与自然语言处理(NLP)及语音识别并列为人工智能三大热点方向,而计算机视觉中的目标检测(ObjectDetection)应用非常广泛,比如...

    统计学家
  • OpenCV:人脸检测。

    小F
  • OpenCV 读写视频

    下面是完整的代码,里面额外添加了一些边缘检测,求帧差,镜像,添加文字等功能。(上传的动图像素差是腾讯的锅,压缩得太厉害)

    用户6021899

扫码关注云+社区

领取腾讯云代金券