计算机视觉 | Python OpenCV 3 使用背景减除进行目标检测

背景减除(Background Subtraction)是许多基于计算机视觉的任务中的主要预处理步骤。如果我们有完整的静止的背景帧,那么我们可以通过帧差法来计算像素差从而获取到前景对象。但是在大多数情况下,我们可能没有这样的图像,所以我们需要从我们拥有的任何图像中提取背景。当运动物体有阴影时,由于阴影也在移动,情况会变的变得更加复杂。为此引入了背景减除算法,通过这一方法我们能够从视频中分离出运动的物体前景,从而达到目标检测的目的。 OpenCV已经实现了几种非常容易使用的算法。

环境

  • Python 3.6
  • OpenCV 3.2 + contrib

在Python下可以通过直接导入wheel包来安装opencv+contrib,可以从下面这个网址下载对应的文件: opencv_python‑3.2.0+contrib‑cp36‑cp36m‑win_amd64.whl http://www.lfd.uci.edu/~gohlke/pythonlibs/

KNN

KNN算法,即K-nearest neigbours - based Background/Foreground Segmentation Algorithm。2006年,由Zoran Zivkovic 和Ferdinand van der Heijden在论文"Efficient adaptive density estimation per image pixel for the task of background subtraction."中提出。

bs = cv2.createBackgroundSubtractorKNN(detectShadows=True) fg_mask = bs.apply(frame)

MOG

MOG算法,即高斯混合模型分离算法,全称Gaussian Mixture-based Background/Foreground Segmentation Algorithm。2001年,由P.KadewTraKuPong和R.Bowden在论文“An improved adaptive background mixture model for real-time tracking with shadow detection”中提出。它使用一种通过K高斯分布的混合来对每个背景像素进行建模的方法(K = 3〜5)。

bs = cv2.bgsegm.createBackgroundSubtractorMOG(history=history) bs.setHistory(history) fg_mask = bs.apply(frame)

MOG2

MOG2算法,也是高斯混合模型分离算法,是MOG的改进算法。它基于Z.Zivkovic发布的两篇论文,即2004年发布的“Improved adaptive Gausian mixture model for background subtraction”和2006年发布的“Efficient Adaptive Density Estimation per Image Pixel for the Task of Background Subtraction”中提出。该算法的一个重要特征是 它为每个像素选择适当数量的高斯分布,它可以更好地适应不同场景的照明变化等。

bs = cv2.createBackgroundSubtractorMOG2(history=history, detectShadows=True) bs.setHistory(history) fg_mask = bs.apply(frame)

GMG

该算法结合统计背景图像估计和每像素贝叶斯分割。由 Andrew B. Godbehere, Akihiro Matsukawa, Ken Goldberg在2012年的文章“Visual Tracking of Human Visitors under Variable-Lighting Conditions for a Responsive Audio Art Installation”中提出。该算法使用前几个(默认为120)帧进行后台建模。它采用概率前景分割算法,使用贝叶斯推理识别可能的前景对象。

bs = cv2.bgsegm.createBackgroundSubtractorGMG(initializationFrames=history) fg_mask = bs.apply(frame)

使用KNN根据前景面积检测运动物体

代码:

# coding:utf8
import cv2
def detect_video(video):     
camera = cv2.VideoCapture(video)    
history = 20    # 训练帧数     
bs = cv2.createBackgroundSubtractorKNN(detectShadows=True)  # 背景减除器,设置阴影检测   bs.setHistory(history)     
frames = 0     
while True:         
res, frame = camera.read()         
if not res:             
break         
fg_mask = bs.apply(frame)   # 获取 foreground mask         
if frames < history:             
frames += 1             
continue         
# 对原始帧进行膨胀去噪         
th = cv2.threshold(fg_mask.copy(), 244, 255, cv2.THRESH_BINARY)[1]         
th = cv2.erode(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)), iterations=2)         dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8, 3)), iterations=2)         # 获取所有检测框         image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)         
for c in contours:             
# 获取矩形框边界坐标             
x, y, w, h = cv2.boundingRect(c)             
# 计算矩形框的面积             
area = cv2.contourArea(c)             
if 500 < area < 3000:                 
cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)         
cv2.imshow("detection", frame)         
cv2.imshow("back", dilated)        
 if cv2.waitKey(110) & 0xff == 27:             
break     
camera.release()
 if __name__ == '__main__':
video = 'person.avi'     
detect_video(video)

效果:

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-11-15

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏Python数据科学

数据分析实战—北京二手房房价分析(建模篇)

本篇将继续上一篇数据分析之后进行数据挖掘建模预测,这两部分构成了一个简单的完整项目。结合两篇文章通过数据分析和挖掘的方法可以达到二手房屋价格预测的效果。

872
来自专栏AI研习社

从原理到实战 英伟达教你用PyTorch搭建RNN(上)

从 Siri 到谷歌翻译,深度神经网络大步推动了机器对自然语言的理解。 迄今为止,大多数模型把语言看作是字词的平面序列(flat sequence),使用时间递...

40611
来自专栏AI科技大本营的专栏

多图|入门必看:万字长文带你轻松了解LSTM全貌

作者 | Edwin Chen 编译 | AI100 第一次接触长短期记忆神经网络(LSTM)时,我惊呆了。 原来,LSTM是神经网络的扩展,非常简单。深度学...

3057
来自专栏大数据文摘

手把手:使用OpenCV进行面部合成— C++ / Python

25512
来自专栏大数据挖掘DT机器学习

决策树案例:基于python的商品购买能力预测系统

1 决策树/判定树(decision tree) ---- 1 决策树(Dicision Tree)是机器学习有监督算法中分类算法的一种,有关机器学习中分类和...

4497
来自专栏人工智能

Python时间序列预测案例研究:巴尔的摩年度用水量

时间序列预测是一个过程,获得良好预测的唯一方法就是练习这个过程。

7775
来自专栏专知

【干货】GAN调研:多极扩展(跨域和条件的GAN扩展模型调研)

本文授权转载于知乎专栏作者:陈乐天 https://zhuanlan.zhihu.com/p/32103958 【摘要】 本文关注跨域(cross-domain...

2757
来自专栏IT综合技术分享

大数据算法汇总

转载36大数据(36dsj.com):36大数据»大数据等最核心的关键技术:32个算法

1581
来自专栏机器之心

学界 | 旷视科技提出新型卷积网络ShuffleNet,专为移动端设计

选自arXiv 机器之心编译 参与:Smith、李泽南 近日,来自旷视科技的 Zhang Xiangyu 等四名研究员联合提出了一种专门为移动端设备而设计的高效...

2764
来自专栏人工智能LeadAI

神经网络瘦身:SqueezeNet

今年二月份,UC Berkeley和Stanford一帮人在arXiv贴了一篇文章: SqueezeNet: AlexNet-level accuracy wi...

37013

扫码关注云+社区