苹果首份AI论文横空出世,提出SimGAN训练方法

当AI浪潮袭来,谷歌、Facebook、微软等几个山头恨不得把自己都浸没在潮水里,可劲打滚儿的时候,苹果这座孤岛却始终有一种不愿被沾湿的姿态。

12月初,在洒满阳光的西班牙NIPS大会上,苹果AI研究团队负责人Russ Salakhutdinov曾兴奋地宣布,苹果将允许其AI研究人员对外发布论文。那之后,众人都在翘首以待,巴巴等着这个这个世界上市值最高的公司(截至12月23日市值6172.34亿美元)的第一篇AI论文将以何种面目出现。

今天,这篇论文出来了。苹果伸出了手指,试探了一下海水。

这篇题为《通过对抗训练从模拟的和无监督的图像中学习》(Learning from Simulated and Unsupervised Images through Adversarial Training)的论文于12月22日提交给了arXiv.org,一经发布迅速点燃了媒体头条。

苹果这篇图像识别领域的论文,提出了一个所谓“模拟+无监督学习”(simulated + unsupervised learning),使用了如今最炙手可热的深度学习“对抗训练”。

而有着“GANs之父”之称的Ian Goodfellow在推特里直接评论道:“苹果第一份机器学习论文是关于GANs的。”

于是,GANs又借势火了一把。

生成对抗网络(GANs)的经典过程

所谓的GANs模型,就是让两个网络相互竞争,玩一个“猫鼠游戏”。

  • 一个叫做生成器网络G( Generator Network),它不断捕捉训练库里真实图片的概率分布,将输入的随机向量转变成新的样本。一句话,G负责生成假图片。
  • 另一个叫做判别器网络D(Discriminator Network),它可以同时观察真实和假造的数据,判断这个图片到底是不是真的。

G尝试用自己的赝品来“蒙骗”D,而D也不断提高自己鉴别赝品的水平。这样G的造假能力和D的鉴别能力都会越来越高超。

在机器学习领域,需要海量的数据来训练模型,而海量数据本身的获取都成问题。AI界常有这么个说法:

“谁手握了数据,谁就占据了人工智能的制高点。”

南京大学周志华教授也曾经在演讲中提到机器学习应用的限制因素:

机器学习虽然能力很强,但它并不是一个万能的东西。至少有两件事,我们经常都要提醒自己,机器学习可能是做不了的。 第一种情况,如果我们的拿到的数据特征信息不够充分,那么机器学习可能就帮不上忙;第二种情况,如果数据样本的信息非常不充分,那么这种情况也基本上解决不了问题。

所以,GANs最具革命性的地方在于,它的生成器G自己产出数据,而人只需要最初输入一些随机向量。无怪乎,Yann LeCun曾评价说:

对抗训练是切片面包以来最酷的事情(Adversarial training is the coolest thing since sliced bread)。”

苹果的SimGAN训练方法

但是苹果这份论文里提到的模型,与GANs还是有些微不同的。他们想要解决的问题就是:提升合成图像的质量。他们对GANs稍加修改,提出了“SimGAN”训练方法,其中的“Sim”指的就是单词“模拟器”。论文摘要里提到:

“我们的模拟+无监督学习方法,使用的对抗网络跟GANs很类似。但是,输入值是合成图像,而不是随机向量。”

苹果的SimGAN其实包括三部分:模拟器(Simulator)和精制器(Refiner),然后再加上一个判别器(Discriminator)。模拟器合成图像,再用精制器优化,最后喂给判别器训练。

有学术圈内人士对这篇论文的“含金量”表示怀疑,然而苹果这份论文“试水”的意义其实远大于论文本身的意义。Forbes评论道:这篇AI论文,是苹果标志性的一步

对于AI业界来说,这表明苹果要迈开步子、扛着大旗来搅动海水了。

这篇论文的第一作者是Ashish Shrivastava,其个人主页上显示为马里兰大学计算机视觉博士。

其它共同作者还有5人,分别是Tomas Pfister, Oncel Tuzel, Wenda Wang(华裔), Russ Webb 和Josh Susskind。但是苹果的“秘密文化”并没有一下子就敞开大口,这6名研究人员,除了Tomas Pfister之外,雷锋网在Twitter上很难找到其它5人的踪迹,而Tomas Pfister这位剑桥、牛津双名校的高材生,至今发过的推文也只有5条而已。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-12-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏新智元

AI当“暖男”:给裸照自动穿上比基尼

【新智元导读】AI可以用来鉴黄,但有时会把含裸女的古典名画过滤掉。巴西的一组研究人员在JICNN上展示了一种新方法,使用生成对抗网络,给女性裸体照“穿上”比基尼...

602
来自专栏计算机视觉战队

基于深度模型的人脸对齐和姿态标准化

美好世界 Wonderful world 相隔41天,Edison又回来了,由于自己和团队的事情比较多,没有在我们的“计算机视觉战队”平台花费过多的精力,今天我...

2294
来自专栏量子位

只需一张照片,运动视频分分钟伪造出来 | MIT新算法

1063
来自专栏AI科技大本营的专栏

这三个普通程序员,几个月就成功转型AI,他们的经验是...

动辄50万的毕业生年薪,动辄100万起步价的海归AI高级人才,普通员到底应不应该转型AI工程师,普通程序员到底应该如何转型AI工程师? 以下,AI科技大本营精选...

3086
来自专栏AI研习社

CS224n 更新 | 第十一讲 - GRU 及 NMT 的其他议题

自然语言处理(NLP)是信息时代最重要的技术之一。理解复杂的语言话语也是人工智能的重要组成部分。 NLP 的应用无处不在,因为人与人之间大部分的沟通都需要语言:...

531
来自专栏数说工作室

这是一份开光的课程 |《神经网络》中文字幕版(2.1 RNN & 2.2 感知机)

《Neutral Network for Machine Learning》(机器学习中的神经网络)系列课程,是深度学习大神 Geoffrey Hinton 毕...

32412
来自专栏AI科技评论

SQuAD2.0来了!现在这里有了机器「无法回答的问题」

AI 科技评论按:斯坦福大学 NLP 组(Stanford NLP Group)昨晚发出公告,文本理解挑战赛 & 数据集 SQuAD 升级为 SQuAD 2.0...

1142
来自专栏机器人网

七步之内成为Python机器学习的大师

线上的Python的机器学习资源如此丰富,从哪开始?如何修炼?这篇文章让你从零开始,七步之内成为Python机器学习的大师。

651
来自专栏AI研习社

如何从零训练神经网络玩游戏?这里有一段详细的解读视频

Youtube 上的知名游戏博主 SethBling训练了一个叫 MariFlow 的神经网络来玩 Mario Kart 游戏。看懂他怎么做的,你也能举一反三。...

3527
来自专栏AI研习社

如何用深度学习推荐电影?教你做自己的推荐系统!

简介 几乎所有人都喜欢与家人、朋友一起观看电影度过闲暇时光。大家可能都有过这样的体验:本想在接下来的两个小时里看一个电影,却坐在沙发上坐了20分钟不知道看什...

3606

扫描关注云+社区