苹果首份AI论文横空出世,提出SimGAN训练方法

当AI浪潮袭来,谷歌、Facebook、微软等几个山头恨不得把自己都浸没在潮水里,可劲打滚儿的时候,苹果这座孤岛却始终有一种不愿被沾湿的姿态。

12月初,在洒满阳光的西班牙NIPS大会上,苹果AI研究团队负责人Russ Salakhutdinov曾兴奋地宣布,苹果将允许其AI研究人员对外发布论文。那之后,众人都在翘首以待,巴巴等着这个这个世界上市值最高的公司(截至12月23日市值6172.34亿美元)的第一篇AI论文将以何种面目出现。

今天,这篇论文出来了。苹果伸出了手指,试探了一下海水。

这篇题为《通过对抗训练从模拟的和无监督的图像中学习》(Learning from Simulated and Unsupervised Images through Adversarial Training)的论文于12月22日提交给了arXiv.org,一经发布迅速点燃了媒体头条。

苹果这篇图像识别领域的论文,提出了一个所谓“模拟+无监督学习”(simulated + unsupervised learning),使用了如今最炙手可热的深度学习“对抗训练”。

而有着“GANs之父”之称的Ian Goodfellow在推特里直接评论道:“苹果第一份机器学习论文是关于GANs的。”

于是,GANs又借势火了一把。

生成对抗网络(GANs)的经典过程

所谓的GANs模型,就是让两个网络相互竞争,玩一个“猫鼠游戏”。

  • 一个叫做生成器网络G( Generator Network),它不断捕捉训练库里真实图片的概率分布,将输入的随机向量转变成新的样本。一句话,G负责生成假图片。
  • 另一个叫做判别器网络D(Discriminator Network),它可以同时观察真实和假造的数据,判断这个图片到底是不是真的。

G尝试用自己的赝品来“蒙骗”D,而D也不断提高自己鉴别赝品的水平。这样G的造假能力和D的鉴别能力都会越来越高超。

在机器学习领域,需要海量的数据来训练模型,而海量数据本身的获取都成问题。AI界常有这么个说法:

“谁手握了数据,谁就占据了人工智能的制高点。”

南京大学周志华教授也曾经在演讲中提到机器学习应用的限制因素:

机器学习虽然能力很强,但它并不是一个万能的东西。至少有两件事,我们经常都要提醒自己,机器学习可能是做不了的。 第一种情况,如果我们的拿到的数据特征信息不够充分,那么机器学习可能就帮不上忙;第二种情况,如果数据样本的信息非常不充分,那么这种情况也基本上解决不了问题。

所以,GANs最具革命性的地方在于,它的生成器G自己产出数据,而人只需要最初输入一些随机向量。无怪乎,Yann LeCun曾评价说:

对抗训练是切片面包以来最酷的事情(Adversarial training is the coolest thing since sliced bread)。”

苹果的SimGAN训练方法

但是苹果这份论文里提到的模型,与GANs还是有些微不同的。他们想要解决的问题就是:提升合成图像的质量。他们对GANs稍加修改,提出了“SimGAN”训练方法,其中的“Sim”指的就是单词“模拟器”。论文摘要里提到:

“我们的模拟+无监督学习方法,使用的对抗网络跟GANs很类似。但是,输入值是合成图像,而不是随机向量。”

苹果的SimGAN其实包括三部分:模拟器(Simulator)和精制器(Refiner),然后再加上一个判别器(Discriminator)。模拟器合成图像,再用精制器优化,最后喂给判别器训练。

有学术圈内人士对这篇论文的“含金量”表示怀疑,然而苹果这份论文“试水”的意义其实远大于论文本身的意义。Forbes评论道:这篇AI论文,是苹果标志性的一步

对于AI业界来说,这表明苹果要迈开步子、扛着大旗来搅动海水了。

这篇论文的第一作者是Ashish Shrivastava,其个人主页上显示为马里兰大学计算机视觉博士。

其它共同作者还有5人,分别是Tomas Pfister, Oncel Tuzel, Wenda Wang(华裔), Russ Webb 和Josh Susskind。但是苹果的“秘密文化”并没有一下子就敞开大口,这6名研究人员,除了Tomas Pfister之外,雷锋网在Twitter上很难找到其它5人的踪迹,而Tomas Pfister这位剑桥、牛津双名校的高材生,至今发过的推文也只有5条而已。

原文发布于微信公众号 - AI科技评论(aitechtalk)

原文发表时间:2016-12-27

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏TensorFlow从0到N

TensorFlow从0到1 - 3 - 人类学习的启示

? 机器学习 上一篇TensorFlow的内核基础介绍了TF Core中的基本构造块,在介绍其强大的API之前,我们需要先明了TF所要解决的核心问题:机器学习...

2936
来自专栏机器之心

「我是可微分编程的粉丝」,Gary Marcus再回应深度学习批判言论

3566
来自专栏AI科技评论

前沿 | IBM发明世界首个人造神经元,离人脑模拟更近一步

受人类大脑运行方式的启发,IBM苏黎世研究中心制成了世界上第一个人造纳米级的随机相变神经元。并在其基础上构建了由500个该神经元组成的阵列,让该阵列模拟人类大脑...

2718
来自专栏机器之心

别人的博士生涯!CycleGAN作者朱俊彦获SIGGRAPH杰出博士论文奖

朱俊彦于 2012 年获得清华大学计算机科学系的工学学士学位,在 CMU 和 UC Berkeley 经过 5 年学习后,于 2017 年获得 UC Berke...

1022
来自专栏专知

等你在2118:探索机器学习算法生命周期

【导读】1月22日,统计学家Venkat Raman发布了一篇比较有意思的博文,作者探讨了到2118年,即未来一百年中机器学习中一些算法可能的兴衰存亡。具体分析...

33312
来自专栏新智元

22岁复旦学生拿下世界深度学习竞赛冠军:50层ResNet网络

【新智元导读】 拥有世界上最大的开源车对车(V2V)网络的 Nexar 公布了第二届 Nexar 挑战赛的结果。来自复旦大学的Hengduo Li 拿下冠军。 ...

6677
来自专栏大数据挖掘DT机器学习

滴滴大数据算法大赛Di-Tech2016参赛总结

---- 写在前面 题目描述 建模方法 特征工程 我的几次提升方法 从其他队伍那里学习到的提升方法 总结和感想 神经网络方法的一点思考 大数据量与分布式计算...

49815
来自专栏新智元

【遗失的秘钥】贝叶斯定理:人工智能的进化论?

贝叶斯定理正在变得如此流行,以至于在CBS剧《生活大爆炸》中也出现了它的身影。纽约时报说,贝叶斯统计学家“遍布一切,从物理学到癌症研究,从生态学到心理学”。物理...

2948
来自专栏人工智能LeadAI

TensorFlow从0到1丨第3篇:人类学习的启示

上一篇TensorFlow的内核基础介绍了TF Core中的基本构造块,在介绍其强大的API之前,我们需要先明了TF所要解决的核心问题:机器学习。 什么是机器学...

4194
来自专栏量子位

《黑镜》黑科技成真 | 解码脑电信号,AI重构脑中的画面

原作 TIM COLLINS Root 编译自 Dailymail 量子位 出品 | 公众号 QbitAI 上周五,一贯借黑科技刻画人性阴暗面的英剧《黑镜》刚出...

3029

扫码关注云+社区