梯度下降法快速教程 | 第二章:冲量(momentum)的原理与Python实现

01 前言

梯度下降法(Gradient Descent)是机器学习中最常用的优化方法之一,常用来求解目标函数的极值。

其基本原理非常简单:沿着目标函数梯度下降的方向搜索极小值(也可以沿着梯度上升的方向搜索极大值)。

但是如何调整搜索的步长(也叫学习率,Learning Rate)、如何加快收敛速度以及如何防止搜索时发生震荡却是一门值得深究的学问。

在上篇文章《梯度下降法快速教程 | 第一章:Python简易实现以及对学习率的探讨》中我们简单分析了学习率大小对搜索过程的影响,发现:

  • 学习率较小时,收敛到极值的速度较慢。
  • 学习率较大时,容易在搜索过程中发生震荡。

因此本篇文章中将简单讲解“冲量”的原理以及如何用“冲量”来解决上述两个问题。

全部源代码可在本人的GitHub:monitor1379中下载。

02 冲量:momentum

“冲量”这个概念源自于物理中的力学,表示力对时间的积累效应。

在普通的梯度下降法x += v中,每次x的更新量v为v = - dx * lr,其中dx为目标函数func(x)对x的一阶导数。

当使用冲量时,则把每次x的更新量v考虑为本次的梯度下降量- dx * lr与上次x的更新量v乘上一个介于[0, 1]的因子momentum的和,即v = - dx * lr + v * momemtum。

从公式上可看出:

  • 当本次梯度下降- dx * lr的方向与上次更新量v的方向相同时,上次的更新量能够对本次的搜索起到一个正向加速的作用。
  • 当本次梯度下降- dx * lr的方向与上次更新量v的方向相反时,上次的更新量能够对本次的搜索起到一个减速的作用。

使用冲量的梯度下降法的Python代码如下:

import numpy as npimport matplotlib.pyplot as plt# 目标函数:y=x^2def func(x): return np.square(x)# 目标函数一阶导数:dy/dx=2*xdef dfunc(x): return 2 * xdef GD_momentum(x_start, df, epochs, lr, momentum): """ 带有冲量的梯度下降法。 :param x_start: x的起始点 :param df: 目标函数的一阶导函数 :param epochs: 迭代周期 :param lr: 学习率 :param momentum: 冲量 :return: x在每次迭代后的位置(包括起始点),长度为epochs+1 """ xs = np.zeros(epochs+1) x = x_start xs[0] = x v = 0 for i in range(epochs): dx = df(x) # v表示x要改变的幅度 v = - dx * lr + momentum * v x += v xs[i+1] = x return xs

为了查看momentum大小对不同学习率的影响,此处设置学习率为lr = [0.01, 0.1, 0.6, 0.9],冲量依次为momentum = [0.0, 0.1, 0.5, 0.9],起始位置为x_start = -5,迭代周期为6。测试以及绘图代码如下:

def demo2_GD_momentum():     
line_x = np.linspace(-5, 5, 100)     
line_y = func(line_x)     
plt.figure('Gradient Desent: Learning Rate, Momentum')      
x_start = -5     
epochs = 6      
lr = [0.01, 0.1, 0.6, 0.9]    
momentum = [0.0, 0.1, 0.5, 0.9]      
color = ['k', 'r', 'g', 'y']      
row = len(lr)     
col = len(momentum)     
size = np.ones(epochs+1) * 10     
size[-1] = 70     
for i in range(row):        
for j in range(col):             
x = GD_momentum(x_start, dfunc, epochs, lr=lr[i], momentum=momentum[j])             plt.subplot(row, col, i * col + j + 1)             
plt.plot(line_x, line_y, c='b')            
 plt.plot(x, func(x), c=color[i], label='lr={}, mo={}'.format(lr[i], momentum[j]))            
 plt.scatter(x, func(x), c=color[i], s=size)            
 plt.legend(loc=0)
 plt.show()

运行结果如下图所示,每一行的图的学习率lr一样,每一列的momentum一样,最左列为不使用momentum时的收敛情况:

简单分析一下运行结果:

  • 从第一行可看出:在学习率较小的时候,适当的momentum能够起到一个加速收敛速度的作用。
  • 从第四行可看出:在学习率较大的时候,适当的momentum能够起到一个减小收敛时震荡幅度的作用。

从上述两点来看,momentum确实能够解决在篇头提到的两个问题。

然而在第二行与第三行的最后一列图片中也发现了一个问题,当momentum较大时,原本能够正确收敛的时候却因为刹不住车跑过头了。那么怎么继续解决这个新出现的问题呢?下一篇文章《梯度下降法快速教程 | 第三章:学习率衰减因子(decay)的原理与Python实现》将介绍如何使用学习率衰减因子decay来让学习率随着迭代周期不断变小,让梯度下降法收敛时的“震荡”与“跑偏”进一步减少的方法。

原文发布于微信公众号 - 人工智能LeadAI(atleadai)

原文发表时间:2017-11-30

本文参与腾讯云自媒体分享计划,欢迎正在阅读的你也加入,一起分享。

发表于

我来说两句

0 条评论
登录 后参与评论

相关文章

来自专栏人工智能头条

利用机器学习进行恶意代码分类

5174
来自专栏CreateAMind

暑期课程第四课:CNN和机器视觉

712
来自专栏机器之心

ICLR 2018 | 斯坦福大学教授Christopher Manning提出全可微神经网络架构MAC:可用于机器推理

选自arXiv 作者:Drew A. Hudson、Christopher D. Manning 机器之心编译 参与:刘天赐、黄小天 现今,神经网络已在图像识别...

3048
来自专栏mwangblog

蚁群算法求函数最大值一

ants = initant(Ant, xl, xu, yl, yu); % 初始化蚁群

1623
来自专栏机器学习算法与Python学习

【干货】深度学习知识体系思维导图,一图让你理解所有概念【高清下载】

深度学习是基于学习数据表示的更宽泛的机器学习方法家族的一部分,而不是特定某一种任务的算法。深度学习过程中可以有监督、半监督或无监督来进行。我们在这里试图在一个....

3092
来自专栏AI科技大本营的专栏

AI 技术讲座精选:如何用 Keras 调试LSTM超参数解决时间序列预测问题

配置神经网络十分困难,因为并没有关于如何进行配置的好理论。 你必须用系统化的思维从动态结果和客观结果这两个角度探讨不同配置,设法理解给定预测建模问题。 在本教程...

3324
来自专栏新智元

分布式深度学习框架PK:Caffe-MPI, CNTK, MXNet ,TensorFlow性能大比拼

作者:施少怀 褚晓文 编译:弗格森 马文 【新智元导读】这篇论文评估了四个state-of-the-art 的分布式深度学习框架,即Caffe-MPI, C...

4867
来自专栏人工智能

支持向量机入门简介

我们会通过分享有用的图书馆和资源而不是用复杂的数学知识来带你入门 SVM 。

3739
来自专栏量子位

Tensorflow官方语音识别入门教程 | 附Google新语音指令数据集

李林 编译整理 量子位 报道 | 公众号 QbitAI Google今天推出了一个语音指令数据集,其中包含30个词的65000条语音,wav格式,每条长度为一秒...

6558
来自专栏大数据智能实战

基于tensorflow实现AI图片鉴黄(NSFW)

       yahoo开源了用于检测图片是否包含不适宜工作场所(NSFW)内容的深度神经网络项目https://github.com/yahoo/open_n...

7299

扫码关注云+社区